The PASCAL Corner

—— e - - - - - e =

Why PASCAL? Every programmer has his or her own favorite
language, and most love to talk about them. At the risk of
boring you, let me tell you why I stopped fighting and switched.

I was a diehard BASIC programmer for years. But once I went
through the considerable difficulty of learning PASCAL at a local
community college, it began to make sense.

True, BASIC-X has lots of nifty functions built in, such as
the POS (position) and TIM (timed input) statements. But in
PASCAL you can design and build your own. I do miss the XI mode,
the execute immediate debugger so handy to programmers just
starting out (like training wheels for bicycle riders). And
waiting for a 1long program to compile to find one missing
semicolon can be sheer agony. Here's what you get in return:

A, On the 8000, interpretive BASIC-X and compiled PASCAL have
a tortoise-and-hare relationship. It's just no contest.

B. The block-on-block manner in which PASCAL programs have to
be written forces you to clearly analyze what you're trying
to do and how to get there. (Improvising as you go along is
a lot of fun, but you wouldn't want to buy a car that was
designed that way). Long variable names also help to keep
things sorted out. "MidwesternYearlySalesTotals" is easier
to understand than "T0", for instance.

C. Since the introduction of the BASIC-X "CALL" statement, it
became possible to pass a parameter to a compiled program,
and back again. 1In this way, PASCAL can expand your BASIC-X
capabilities.

D. There simply is no way to do in BASIC-X some of the things
you can do easily in PASCAL. Submitting a batch job is one
common example. By using executive requests, which don't
exist in BASIC-X, you can drop to the underworld of machine-
language. It gives you much more control over how your
computer behaves. Similarly, you can interface with the FMS
(file management system), *he most efficient database manager
existing for the 8000.

(COBOL programmers can send their remarks to the COBOL
CORNER, c/o this magazine. I'm sure there will be plenty.)

XREQs (pronounced Eks-Rex) fall into three general
catagories: User Requests, File Requests, and Executive Requests.
They are extremely useful, but a little confusing at first. When
I was learning how to use them, I relied heavily on examples. 1In
the issues to come, we'll be presenting some of the solutions
we've found to common programming problems. As is usual with all
our donations, no warranties or guarantees are implied.

We'll start with something relatively simple. How do I make
a program pause for a given interval? Unlike the BASIC-X TIM
function, PASCAIL doesn't have a preset method. You could make it

. count to a million by ones. You could put it into a loop that

continually examines the system universal time, and fall out when
a given value is reached, or RUNPROGRAM(.SYS:WAIT,PauseStr, X).
All of these would waste time and memory space.

There is a User Request available that puts your process at
the bottom of the service queue--in effect, puts it into
suspended animation.

PROGRAM STALL (INPUT ,OUTPUT) ;

CONST URDELAY = 16#140; {Delay process UREQ, page 3-90 of the manual.
The tic-tac-toe character tells the system that
the following number is hexadecimal, a handy
little trick in itself.}

VAR DummyValue, RegisterZero, Seconds : INTEGER;

PROCEDURE GoToSleep(SleepSeconds : INTEGER):;
{suspends program execution for given time (sleep seconds)}

BEGIN
{We start by loading a register with the ID number of a
machine-language subroutine. In this case, a Hex 140.}
~ RegisterZero := URDELAY;

DummyValue := 0; {This could be any number.}

{Here is the actual call to the routine. Some XREQs use all five
CPU registers in combination as needed. They are used also to pass
results of the operation back to your PASCAL program, when the
work is finished.}
UREQ(RegisterZero, SleepSeconds, DummyValue, DummyValue, DummyValue);

{1f everything went OK, the first register will be zeroed out. If
something fouled up, it will contain the number of an error message.
Routines exist to analyze the error number and tell you in English
what the problem was. We'll show you one later.}

IF Registerzero < 0
THEN TellWhatsWrong (RegisterZero);

END; {PROCEDURE GoToSleep}

[{Here's an example of how you might drive the procedure above.}
BEGIN {Main program, STALL}

—{Here's another tip. PASCAL sees your terminal as just another
output file, so you can manipulate output as though it were going to
a line printer. 1In this case, we are preceeding the text with the
splat character. This tells the machine to suppress the CR/LineFeed
sequence at the end of the line. In BASIC-X, an equivalent state-
ment would be:

10 PRINT "HOW MANY SECONDS?";
20 INPUT S }

FORMAT (OUTPUT, '*');

WRITELN ('How many seconds should I pause? ');
READLN (Seconds) ;

GoToSleep (Seconds);

WRITELN('I am running again.');

END. {Main Program, STALL}

As promised, here's a routine to analyze XREQ error numbers.

— PROCEDURE TellWhatsWrong (ErrorNum : INTEGER);
{Interprets the error status received from an XREQ (R0O). Page 9-4 of
the PASCAL manual, although here it's set up as a procedure.}

CONST URERRORGET = 164028; {Get the error type, Page 3-100 of the UREQ

manual. }
TYPE ERRORSTR = STRING[48]; This will store the error message.}
ERRORSTRPTR = “ERRORSTR; {Tells where the string is in memory.}

{This is a 4-byte array, used as a function to extract a byte.
~-Only part of the error number is relevant.}
BYTE = PACKED ARRAY[0..3] OF 0..255;

VAR ErrStrPtrvariable : ERRORSTRPTR; {Define a pointer variable}

BEGIN
{Create a dynamic variable}
NEW (ErrStrPtrvariable);

[set length to 48 (longest error message). Then fill it with blanks}
Errstrptrvariable”[l1..48] := ' ';

RRO := URERRORGET;

{Here's the starting address of the string,
string, plus one to skip length field}
RR1 := ORD(ErrStrPtrvariable) + 1;

RR2 := ErrorNum;

{Here's the actual call to the machine-language subroutine.}
UREQ(RRO, RR1l, RR2, DummyvVal, 48);

IF RRO >= 0
THEN BEGIN
[RR1 returns carrying the unused portion of the string}
WRITELN ('XREQ ERROR: ', BYTE (ErrorNum) [3]1:4, ' "',
ErrstrPtrvariable®[1..48 - RR1l],'"");
END

[Wwe just got an XREQ error while interpreting an XREQ error.}
ELSE WRITELN ('UREQ ERROR:', BYTE (RRO) [3],
'--Cannot interpret error type.');

{It's hopeless. Quit and set the error flag.}
STOPPROGRAM (1) ;

END; {PROCEDURE Tell what is wrong with the Xreg}

Some of this probably seems a little arcane. To get myself
started, I just copied examples verbatim, changing variable names
as needed with +SCREDIT. After working with them for a while,
the logic behind it all gets clearer.

--Ray

