i

NMODEL 4000
Interactive Timesharing System

USER'S NMANUAL

Basic Timesharing Inc.

FOREWORD

THE BTI 4000 SYSTEM

Basic Timesharing 4000 series computer hardware and software are designed specifically as an
integrated timesharing system, and all system computing resources are shared among all active users

on a round-robin basis.

Access to the computer is done through an account identifier with an associated, non-printing
password. Up to 5800 user accounts, selected from 26,000 possible account identifiers, can be
assigned at one time on the BTI 4000. The BTI hierarchy of supervisory and user accounts and their
associated libraries permits easy allocation of computer resources among organizational departments,
projects, etc. Any combination of software application packages, application users and traditional

timesharing users can co-exist on the 4000 system.

Proprietary software packages may be installed and maintained on BTI 4000 system which are not
under the direct management of the software package owner. Reciprocal security mechanisms permit
the software owner to access his package, even through a remote terminal telephone connection,

while avoiding the risk of security breaches, either in the proprietary software, or in the host computer.

SYSTEM MANAGEMENT

The BTI 4000 system is designed for simplicity of management. This User’s Manual, the System
Manager’s Manual and a set of Public Library Program descriptions provide all the instruction neces-
sary for the system manager to make full use of the computer. Since all system manager control and
reporting functions can be implemented through any system port, there is no need for a system oper-

ator’s console.

BASIC-X LANGUAGE

BASIC-X, the BTI 4000 user language, is an extended version of the popular, easy to use BASIC
language. BASIC-X has been continually improved since its introduction in 1970, and includes matrix,
logical and string operators, and string arithmetic with up to 252 digits of decimal precision. Programs
may be shared among many users. The BASIC-X file subsystem permits dynamic file creation and
deletion from a program; variable length, multi-record file buffers for fast data access; up to 63 con-
currently linked files; linked files declared in COMMON, eliminating the need to re-link files when
chaining programs; non-interfering file sharing to prevent update errors. Command files can provide
the user with virtual “one-step’” man/machine interface. Features to facilitate program development
include line-by-line format and syntax verification; automatic FOR ... NEXT loopindentation and

Execute Immediate Mode for dynamic program debugging.

HOW TO USE THIS MANUAL

This manual is intended primarily as a reference for current and prospective users of BTI interactive
timesharing systems. The sample programs may be duplicated at the user’s own terminal, and begin-
ning users are encouraged to try the samples themselves. The syntax examples are generalized
versions of how the statement of command under discussion is to be constructed. Statement and
command key verbs are capitalized and their arguments and parameters are italicized. Often a two-
word argument descriptor is spelled as one word, e.g., “line number’’ appears as “linenumber”’. This

is done to avoid the implication that the argument may in some way demand a two-part construction.

The text following the word FEATURES throughout this manual gives pertinent information about
the syntax such as which arguments are optional, their default values if any, and their specific

purposes.
The reader’s comments and suggestions are invited and may be addressed to:

Basic Timesharing, Inc.
870 W. Maude Avenue
Sunnyvale, California 94086

Attn: User’s Manual

ii

Chapter
1

TABLE OF CONTENTS

Title

GETTING STARTED

1.1

1.2
1.3

14

LOG-ON PROCEDURES
1.1.1 Account Numbers and Passwords

1.1.2 Log-On Procedures Using a Teletypewriter
(or equivalent)

1.1.3 Log-On Procedures Using Other Terminals
LOG-OFF PROCEDURES

COMPUTER OPERATING MODES

1.3.1 Program Entry Mode

1.3.2 Program Execution Mode

1.3.3 Execute Immediate Mode

TERMINAL OPERATING CHARACTERISTICS

FUNDAMENTALS OF BASIC

2.1.

2.2

2.3

2.4

2.5

2.6

NUMERIC REPRESENTATION

2.1.1 Numbers

2.1.2 Significant Digits and E Notation
ARRAYS

2.2.1 Array Subscripting
EXPRESSIONS

ARITHMETIC AND LOGICAL OPERATORS
VARIABLES

2.5.1 LET and Implied LET Statement
STRINGS

2.6.1 String Variables

2.6.2 Subscripted String Variables
2.6.3 Destination Strings

2.6.4 LEN Function

2.6.5 String LET Statement

2.6.6 String IF Statement

2.6.7 Strings in READ, DATA, PRINT and INPUT
Statements

Page

1-1
11

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-4
2-6
2-7
27

2-8
2-9
2-9
2-10

2-10

Chapter

TABLE OF CONTENTS (Continued)

Title

2.7 INPUTTING DATA

2.7.1
2.7.2
2.17.3

READ and DATA Statements
RESTORE Statement
INPUT Statement

2.8 OUTPUTTING DATA

2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9
2.8.10
2.8.11
2.8.12
2.8.13
2.8.14

PRINT Statement

Field Widths

Comma Delimiters

Semicolon Delimiters

Terminating Delimiters

MAT PRINT Statement

Logical Line Length

TAB Function

CHRS$ Function and ASC Function
PRINT USING and IMAGE Statements
Replicators

Specifier Sets

Numeric Formatting Rules

Carriage Control

2.9 STRING ARITHMETIC

2.9.1

VAL Function

2.10 MATRIX ARITHMETIC

2.10.1

DIM Statement

2.10.2 MAT READ and MAT INPUT Statements

2.10.3

ZER Function

2.10.4 CON Function
2.10.5 IDN Function
2.10.6 Array Manipulation Statements

PROGRAM STRUCTURE

3.1 END STATEMENT
3.2 GOTO STATEMENT
3.3 IF ... THEN...STATEMENT

iv

Page

211
211
2-12
2-13
2-14
2-14
2-15
2-15
2-15
2-17
2-18
2-20
2-20
2-21
2-22
2-24
2-24
2-26
2-27
2-29
2-30
2-32
2-32
2-32
2-34
2-34
2-35
2-35

3-1
3-1
3-3

Chapter

TABLE OF CONTENTS (Continued)

Title
3.4 FOR ...NEXT...STATEMENTS
3.5 GOSUB. .. RETURN STATEMENTS
3.6 ON ERROR ... RESUME STATEMENTS
3.7 LOCAL AND INTRINSIC FUNCTIONS
3.7.1 Local Functions
3.7.2 Intrinsic Functions
PROGRAMS
4.1 COMPILER OPERATION
4.2 PROGRAM STATEMENTS
4.3 LINE NUMBERS
4.4 ENTERING A PROGRAM
4.5 RENumber COMMAND
4.6 LISTING AND RUNNING A PROGRAM
4.7 DEBUGGING A PROGRAM
4.8 REM STATEMENT
4.9 CHAIN STATEMENT
410 COM STATEMENT
411 APPend COMMAND
LIBRARIES
5.1 THE LIBRARY HIERARCHY
5.1.1 Special Purpose Accounts
5.1.2 User Accounts
5.2 LIBRARY MANAGEMENT
5.2.1 Adding Programs to the Library
5.2.2 Displaying the Contents of the User’s Library
5.2.3 Renaming Catalog Entries
5.2.4 Indexing Libraries
5.2.5 Deleting Programs from the User’s Library
5.2.6 Other Library Management Activities
5.3 SHARED PROGRAMS

Page

4-8
4-9
4-10

5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-6
5-7
5-8
5-8

Chapter

Appendices

A.

o aw

FILES

6.1
6.2

6.3

6.4

6.5

TABLE OF CONTENTS (Continued)

Title

STRUCTURE OF BASIC FILES
CREATING/ERASING/LINKING FILES
6.2.1 Creating and Erasing Files

6.2.2 Linking Files

ACCESSING FILES

6.3.1 Reading Data From Files

6.3.2 Writing Data To Files

6.3.3 File Data Location

COMMON FILES AND FILE BUFFERS
6.4.1 Common Files

6.4.2 File Buffers

SHARED FILES

6.5.1 SHAre Command

6.5.2 Listing File Access

6.5.3 Copying Files

6.5.4 UNShare Command

6.5.5 File Modes

COMMAND FILES

COMMANDS

ASCII CHARACTER SET

ERROR MESSAGES

PUNCHED PAPER TAPE

PUBLIC LIBRARY UTILITY PROGRAMS

vi

Page

6-2
6-2
6-3
6-5
6-5
6-7
6-10
6-13
6-13
6-15
6-15
6-15
6-15
6-16
6-17
6-17

A-l
B-1
C1
D-1
E-1

Chapter 1
GETTING STARTED

1.1 LOG-ON PROCEDURES
1.1.1 Account Numbers and Passwords

A prescribed log-on procedure must be followed in order for a prospective user to be recognized
by the system. The user must have a valid account number and password combination to gain

access to the system.

Account numbers may be opened by the System Manager, or a Master Account may open accounts
within the same letter block. Account numbers consist of one alpha character followed by three

numeric digits.

Passwords may be any combination of ten or fewer allowed characters, printing or non-printing.
Non-printing or control characters used as passwords provide good security against unauthorized
use of an account number, or access to programs, files and data bases. However, the control char-

acters listed below are not recommended for use in non-printing passwords:

G sounds a bell generates a linefeed

initiates a form feed generates a carriage return
generates an X-OFF and is ignored

disconnects some modems generates a vertical tab

ooR ! 2

L
R turns on the paper punch
D
I

causes a horizontal tab turns off the cursor on CRTs

Certain account numbers are privileged accounts, with unique system commands or other features.

Thus, for example,

D200 the Group Library shared by all D2nn accounts, and referenced by a single
$ symbol, e.g., GET-$PROGRAM

D001 the Master Library shared by all Dnnn accounts, and referenced by two $$
symbols, e.g., GET-$$PROGRAM

D002 the Master Account for all Dnnn accounts and not accessible to other users.

@001 the System Library shared by all accounts, and referenced by three $
symbols, e.g., GET-$$$PROGRAM

11

1.1.2 Log-On Procedures Using a Teletypewriter (or equivalent)

After establishing a connection with the system, either by telephone line or by direct (‘‘hard wire’’)
line, the user may verify that the connection exists by pressing the ESCAPE key. If there is a con-
nection to the computer, then a backslash (\) will be printed. If no connection exists, then there
will be no response to the ESCAPE key. The user must identify himself to the computer using

the following format and a carriage return:

HEL-account,password (carriage return) e.g.,

HEL-X234,PASSWORDOK (carriage return)

Following a valid log-on, the system will respond by executing the system ‘HELLO’ program.
Like any abortable program, the HELLO program and any program to which it is chained can
either be run to completion or aborted by striking the BREAK key twice with about a 1 second
pause between strikes. In some cases the System Manager or a Master Account may elect to make
the HELLO and MESSAGE programs non-abortable. Once the HELLO program and any program
to which it is chained is either completed or aborted, the user’s swap track is cleared for entry of
program statements or execution of programs or of direct commands. HELLO programs or pro-

grams to which they chain cannot be listed or punched by the user.
If the account/password combination is not recognized, the system will respond:
INVALID PASSWORD

and the user will be required to issue the log-on command again. About one minute is allowed
for the user to accomplish the log-on. After that time if there is no successful log-on, the system

will disconnect the line and another call will have to be placed to the computer.

1.1.3 Log-On Procedures Using Other Terminals

While the computer can communicate with either full or half duplex terminals, full duplex
(echo-plex, actually) is the preferred mode. This mode permits the user to detect any transmis-
sion errors in input characters by examining the echoed characters at the teleprinter. If a given
terminal operates only in half duplex, then garbage will be echoed at the terminal in response to
the HELLO command. To check for a successful log-on and to modify the computer’s trans-
mission mode, the command,

ECHO-OFF
will suppress the computer’s echo of input. The command

ECHO-ON

returns the computer to echo-plex transmission.

1-2

The system usually operates at 110 baud (10 characters per second) unless certain ports have been
preset by the System Manager to expect a different baud rate. Regardless of the preset rate, the
baud rate on a port may be modified by the user via the RATe command. For example, after a
successful log-on to a 110 baud port, the user may wish to change the transmission rate to 300

baud. This is done by typing
RAT-300

Standard baud rates are 110 with 11-bit characters, or 150, 220, 300, 440, 600, 880, 1200 and
2400, all with 10-bit characters. If any non-standard baud rate between 100 and 2500 or if a
non-standard bit pattern is desired, then the user may force the rate and bit pattern by using the
RATe command plus c;ne ! symbol if 10-bit characters are desired, or two ! symbols if 11-bit

characters are desired. For example,
RAT-1100!!

forces the system to transmit and receive data at 100 characters per second, with 11-bit characters,

and
RAT-750!
forces the system to transmit and receive data at 75 characters per second with 10-bit characters.

The standard carriage width at log-on is 72 characters, but the user may modify this downward
to as narrow as 20 characters per line, or upward to as wide as 254 characters per line. This modi-

fication is done by the CARriage command, thus:
CAR-n e.g., CAR-132

would set the carriage width to 132 characters. There is a special form of the CAR command,
CAR-0

which sets the carriage width to “unlimited’’. This feature is used for plotting on terminals, for

CRT cursor control, for backspacing and various other special applications.

Terminals other than a standard teleprinter may require extra time for the carriage to return to

the left side of the page following a line of input or output. The following commands are provided
to allow for the timing variations found in various terminals. For slower carriage return mechan-
isms, the time allowed may be altered to fit the current need by the CRD (Carriage Return Delay)
command, thus:

CRD-n e.g., CRD-20

1-3

where n = character times. If the port is operating at 110 baud, (10 cps) then a 2-second delay
will result from the command CRD-20. The upper limit on CRD is 100, and the default setting
is 0.

The default setting for Line Feed Delay is 0. This may be modified by the LFD command, thus:
LFD-n e.g., LFD-30

where n = character times. If the port is operating at 110 baud, (10 cps) then a 3-second delay
will result from the command LFD-30. The upper limit on LFD is 100.

The Form Feed Delay may be modified by the FFD command, thus:
FFD-n e.g., FFD-200

where n = character times. If the port is operating at 110 baud, (10 cps) then a 20-second delay
will result from the command FFD-200. The upper limit on FFD is 255, and the default setting
is 10.

1.2 LOG-OFF PROCEDURES

There are four ways for the user to terminate operation from a given account number on a given

port.

1. The recommended way to log off the system is to type the command BYE. The system
will print out the amount of time used in hours, advance the paper for removal of output,
and automatically disconnect the terminal in an orderly manner. The current program in
the user’s work area is lost.

2. The recommended way to transfer between account numbers is to execute a new HELLO

command for the new account number. If a valid HELLO is entered, the system will auto-
matically log the user off the existing number and onto the new account number on the
same terminal and port and baud rate. If the account/password combination is incorrect

the system will type:

XXX.XX HOURS
INVALID PASSWORD — NO TRANSFER

and the user will be returned to the old account number with the current time used re-set
to zero. Whether or not the new HELLO command was accepted by the computer, the
user does not have to re-dial the system, and the HELLO message is usually limited to the
word READY. The current program is retained in the user’s swap track. Transferring

from one account to another in this manner affords the user a very fast and convenient

1-4

way to transfer a program between account numbers without punching it out on paper

tape and then reading it back.

For example,

HEL-V@50,

000.01 HOURS

READY

GET-TAKEALONG
HEL-V@90,

0006.81 HOURS

READY

SAV

BYE

Should the user wish to log off an account by logging onto a different account, but not
save the work being done on the first account, then the SCRatch command should be

executed either immediately prior to the second log-on, or immediately following it.

A third method of logging off, valid only for terminals operating over telephone lines, is
to hang up the telephone. The system automatic disconnect will sense the loss of carrier
and will log the user off the system. The current program is lost and the user does not
receive a written record of the time used. A user can, in some cases log off a directly
connected (‘“hard wired’’) terminal in this manner or by turning the LINE/OFF/LOCAL
switch to OFF or to LOCAL. (Users may occasionally be logged off the system on an
unplanned basis because of temporary loss of telephone carrier or of power at the com-
puter or at the terminal, or by spurious signals in the telephone lines. To minimize the
inconvenience of such interruptions, it is prudent to SAVe a working copy periodically

of the program currently in the work area.)

A forced log-off may be program-initiated by chaining to “$$$$”’. This technique is
sometimes useful with non-abortable programs or with long programs that frequently

run unattended where an automatic log-off is desired at completion of the program.

1-5

1.3 COMPUTER OPERATING MODES

The computer operates in any of three modes: the program entry mode, program execution mode,

or Execute Immediate Mode.

1.3.1 Program Entry Mode

In program entry mode the computer analyses input lines to determine whether they are BASIC
program statements (first character numeric) or direct computer commands (first character

alphabetic).

1.3.2 Program Execution Mode

The computer is in program execution mode when a program is being run. This includes the pro-

gram which is awaiting input from the user.

1.3.3 Execute Immediate Mode

The computer is in Execute Immediate Mode when an executing program is suspended without
having executed an END statement. Specifically, there are three ways to enter Execute Immedi-

ate Mode:
1. The executing program encountered a STOP statement

2. A programming error was encountered (any program error which sends the system into

Execute Immediate is called a terminal error)
3. The BREAK key was pressed once during program execution

The user will recognize that the computer is in Execute Immediate Mode because the system will
type

STOPPED AT n
XI?

where n is the line in the current program which immediately follows the line where execution
was interrupted. Several options are available at this point. One, the user can type GOTO n where
n is a line number in the current program, and resume execution. Two, the user may execute a
BASIC program statement, or three, the user may terminate the currently suspended program by

typing END or by typing control C (CC) or by typing a carriage return.

1-6

14 TERMINAL OPERATING CHARACTERISTICS

The BTI system supports a wide variety of ASCII terminals, and although operating conventions
may vary slightly from one make or type of terminal to another, the procedures described below

apply to the most commonly used terminals.

Every line of information entered into the computer through the terminal keyboard must be ter-
minated by a carriage return. (Strike the RETURN key). The computer signals readiness to

receive the next line of input by outputting a linefeed after the user-initiated carriage return.

Erroneously typed characters may be deleted by typing one backspace (<- on some terminals or
upper shift 0 (_) on some terminals) for each incorrectly typed character. This must be done
prior to striking the RETURN key in order to be effective. For example, ACB«<BD<C (carriage

return) would be the same to the computer as typing ABC (carriage return).

An entire line may be deleted by striking the ESCape or ALT-MODE key. The system will respond
with a backslash (\), a carriage return and a linefeed, and will then be ready to receive the (cor-

rectly typed) line again. The ESC or ALT-MODE is used in lieu of the RETURN key in this instance.

1-7

Chapter 2

FUNDAMENTALS OF BASIC

2.1 NUMERIC REPRESENTATION
2.1.1 Numbers

The BTI system stores numbers in binary floating point form, and handles numbers in the range
5.87747 x 1039 t0 1.70141 x 1038,

2.1.2 Significant Digits and E Notation

Decimal numbers to be input or output are limited to six significant digits. Numbers which
exceed this limitation are rounded and output in 6-digit decimal scientific (or ““E’’) notation. For
example, the decimal value .001231237 is rounded to .00123124 (numbers less than 1 but greater
than -1 are rounded beginning with the left-most non-zero digit) and is output as 1.23124E-03.
Similarly, the decimal value 1231237 is rounded to 123124 and is output as 1.23124E+06, and
the value 123123700 is rounded to 123124 and is output as 1.23124E+08.

2.2 ARRAYS

Array is the generic term for a numeric set. A one dimensional array is called a vector, and a two

dimensional array is called a matrix.

In the BTI system, numbers may be manipulated individually as ‘‘scalars” and as individual elements

of an array, or in groups, as arrays.

Where two dimensions are specified for an array, the one which is specified first (on the left) refers
to the number of rows in the array, and the second, (the one on the right) refers to the number of

columns. For example, the statement

0013 DIM A(3,4)

means that the array A is a matrix with 3 rows and 4 columns, and the statement
0013 DIM B(17)

means that the array B is a vector with 17 elements.

Unless it is defined to be otherwise, an array variable is assumed by the system to be either dimen-
sion 10 or dimension 10,10. The system resolves the ambiguity based on how elements of the

array are defined.

2-1

For example, the statement
0013 X(2,1)=6

implies to the system that the array X is a 10 by 10 matrix, provided that no DIM statement has

been declared to the contrary, whereas the statement
0013 X(6)=489

implies to the system that the array X is a 10 element vector, again, provided that no DIM state-

ment has been declared to the contrary.

2.2.1 Array Subscripting

To access a single element in an array, the variable name must be subscripted by either one or two
numbers in parentheses following the variable name. (The number of subscripts, one or two,
depends on how many dimensions the array has, i.e., one subscript is legal for vectors and two
subscripts must be used for a matrix.) For example, the expression A(2,3) refers to the element

of an array which is in the second row and the third column. Therefore, if

2 11 10

LW OY =
N Ov 00 =
e e B

then A(2,3) =17

Arrays may be used in arithmetic operations only as variables, and not as constants. To output an
entire numeric array the MAT PRINT statement is used. For further information see Section 2.8,

Outputting Data.

2.3 EXPRESSIONS

The word “expression” is used in this manual in the mathematical sense to denote one or more

variables, constants and/or operators which when taken together are reducable to a numeric value.

2.4 ARITHMETIC AND LOGICAL OPERATORS

In BASIC the system evaluates an expression by first replacing each variable in the expression with

its value and then performing the specified operations on the values.

BASIC statements are written on one line for each statement and without subscripting of the form
A1 or superscripting of the form A2, or numerator/denominator formats of the form %
Arithmetic operations are performed according to a specific hierarchy. Below is a table of the

BASIC arithmetic operator hierarchical sequence.
2-2

SEQUENCE BASIC STANDARD FORM

1) exponentiation
2 NOT ~ negation
* x multiplication
/ + division
& binary AND
3 % binary OR
+ + addition
- -~ subtraction
MIN minimum
5 MAX maximum
6 # # not equal
6 <= < less than or equal
6 >= > greater than or equal
6 < < less than
6 > > greater than
1 AND logical and
8 OR logical or

Between any two operators in the same BASIC statement, the one higher in the above table is

performed first. If they are at the same level (# and >- for example) they are performed from

left to right as they occur in the statement.

An arithmetic operator is one whose result reflects some interaction between the operands.

(Operators at the 1, 3 and 4 levels are arithmetic operators.) A logical operator is one whose

MEANING
A1B means AB

(NOTX)=0IF X #0
=1IFX=0

A*Bmeans Ax B

A/B means A~ B

(A&B)=0 IF A=0 OR IF B=0
=1 IF A=1 AND IF B=1

(A%B)=0 IF A=0 AND IF B=0
=0 IF A=1 AND IF B=1
=1 IF A=0 AND IF B=1
=1 IF B=1 AND IF B=0

A+B
A-B
(AMINB)= AIF A<B
=BIFA>B
(AMAXB)=AIFA>B
~BIFA<B
(A#B)=0IF A=B
~1IFA#B
(A<B)=0TF A>B
=1IFA<B
(A>-B)=0IF A<B
- 1IFA>B
(A<B)=0IFA>B
=1IFA<B
(A>B)=0TF A<B
=1IFA>B

(A AND B) = 0 IF A=0 OR IF B=0
=1IF A#0 AND B#0
(A OR B)=0IF A=0 AND B=0
=11IF A¥#0 OR IF B#0

result reflects some relationship between the operands. (Operators at the 2 level and at the 5

through 8 level are logical operators.)

2-3

25 VARIABLES

’ In BASIC-X, the allowed types of variables and variable names are,
VARIABLE NAME EXAMPLE
numeric simple (or ‘“‘scalar’’ or one- letter or N
element) variable letter+digit T6
(digit 1 - 9)
numeric array (multi-element) variable letter A
character string (one- or multi- letter+$ 7$

element) variable

The same letter may be used to name any or all of the above types of variables in one program. For

example,

LIS

ga1g DIM AS$[15],A[3,3]
ga2g A$="STRING VARIABLE"

gg3g MAT READ A
ggag DATA 1,2,3,4,5,6,7,8,9
gUsg LET A=1g0

’ gg6Q LET Al=200

\ ga79 LET A7=3040

LY MAT PRINT A;

o999y PRINT AS;

gg1g PRINT A;

g11g PRINT Al;

9120 PRINT A7;

9139 PRINT A[2,3];

9999 END

RUN
1 2 3
4 5 6
7 8 9

STRING VARIABLE 1@¢ 209 3¢¢ 6
DONE

Note that the letter A is used to name an array dimensioned 3,3 (in Line 10), to name a string variable

A$ (in Line 30) and to name three simple variables, A, Al, and A7 (in Lines 50, 60 and 70 respectively).

While in general it is recommended that different letter names be used in order to avoid confusion, the
’ user should realize that he has at his disposal 260 simple variable names, 26 array variable names and

26 string variable names, any combination of which may be used in a single program.

2-4

Where a value or values have not been explicitly assigned, each type of variable is handled in a

different way.

If no value has been assigned to the numeric variable A, then the statement,

0010 PRINT A
#0920 END
RUN

will cause the computer to respond,

UNDEFINED VALUE ACCESSED IN LINE 140

and the system will go into Execute Immediate Mode.
STOPPED AT 240

XI?

Similarly, the statement

0019 MAT PRINT A
0020 END
RUN

will cause the computer to respond,

ARRAY OF UNKNOWN DIMENSIONS

This error is caught during the compile phase of program execution, so the system stops compiling

at the point where the error is encountered and returns to the program entry mode.

Just as the dimension(s) of an array must be declared, so.must all of the elements in the array be
defined. For example,

8818 DIM A[S5]

620 A[l]l=A[2]=A[3]=1

03384 MAT PRINT A

#3409 END
RUN

now the system responds,

UNDEFINED VALUE ACCESSED IN LINE 30

STOPPED AT 449
XI?

because some values of the array A are, in fact defined but some as yet are not, the array cannot

be dealt with as an entity.

2-5

If no value has been assigned to the string variable A$, then the statement

9010 PRINT AS
0020 END
RUN

DONE

will not cause an error. This is because unlike numeric variables, string variables are considered to
be defined as being empty when they have not been assigned a string value. In the case cited above,

a single carriage return would be output to denote that A$ is an empty string variable.

All variables are assigned values in one of three ways: the LET statement, the READ statement,

or the INPUT statement.

2.5.1 LET and Implied LET Statement
SYNTAX

A. 0013 LET variable=expression

B. 0013 variable=expression

FEATURES

1. The LET statement assigns the value of an expression to a variable. For example, the
statement

9913 LET A=B=C=D=1
is a legal way of assigning the value 1 to the variables A,B,C and D.
2. The descriptive verb (LET) may be omitted from this statement type and only from this

statement type. The system recognizes any such verbless statement as an implied LET

statement. For example,

p010 DIM A[2,3]
9020 A[l,2]=(B+C)/2
#0380 X=Y=2[I,J]=-1

LET statements are compiled more rapidly when the verb is used explicitly.
3. If an equal sign (=) is used in such a way that its meaning could be ambiguous then the

system will assume that it is an assignment operator. For example, in statement 30 above,

all three equal signs are treated as assignment operators. In the following case, however,

0013 X=Y=(Z[I,J]=-1)
2-6

the value of X and Y depends on the value of the logical expression (Z(I,J)=-1). If the expression
evaluates as ‘“‘true’’ then X and Y will both have the value 1. If Z(I,J) does not equal -1, (i.e., if

the expression evaluates as ‘‘false’’), then X and Y will both have the value 0.

2.6 STRINGS

BASIC-X provides the user with the capability to manipulate character strings. String manipula-
tion is accomplished by the use of string variables, string LET statements, and string IF statements.
Strings may also be used in READ, INPUT and PRINT statements.

2.6.1 String Variables

FEATURES

1. String variable names must be of the form: letter$, e.g., Z$.

2. The specified dimension of a string (in a DIM statement) is said to be its physical length.
3. If it is not specified in a DIM statement, a string’s physical length is taken to be 1.

4. The number of characters actually in the string is said to represent its logical length.

5. A string may contain fewer characters or the same number of characters as its physical

length, but may never contain more characters than its physical length.

6. A string may be dimensioned from 1 to 254 inclusive, and may actually contain from 0

to 254 characters.

All string variables are considered to be arrays of characters, i.e., each array element is a single charac-

ter. The logical length of the string is initialized to 0 (empty) at the beginning of program execution.

2.6.2 Subscripted String Variables

FEATURES

1. A string variable may have none, one or two subscripts. For example, assume that
A$=“ABCDEFG”, then

PRINT A$ yields ABCDEFG
PRINT A$(4) yields DEFG
PRINT A$(2:6) yields BCDEF

Where no subscript is specified the entire logical string is printed. Where one subscript is

specified — A$(4) for example — the string beginning with the 4th character in this case,

2-7

and ending with the last character in the string is printed. Where two subscripts are
specified — A$(2:6) for example — the string beginning with the 2nd character in this

case and ending with the 6th character is printed.
2. Subscripts must have a value of at least one.

If two subscripts are specified, the second one in the pair must be no smaller than one less than
the first, and if it is larger than the logical length of the string, the string is considered to be
followed by an infinite number of blanks. For example, assume that A$=“ABCDEFGH”’,

A$(5:10) “EFGH ”
A$(11:10) ? ? (null string)
A$(0:1) is illegal

A$(8:6) is illegal

A$(9) =" (null string)
A$(10) is illegal
A$(19:12) isillegal

2.6.3 Destination Strings

A destination string is a string variable into which a different (source) string is being copied. Part

or all of the destination string may be replaced by part or all of the source string. For example, if

0010 DIM A$(26),B$(10),C$(10)
0020 B$="“ABCDE”
0030 C$=“AKLMNOB”

then progressively,

1. A$(@1:5)=B$ yields A$=ABCDE

2 A$(6:10)=“FGHIJ” yields A$=ABCDEFGHIJ

3 A$(11:15)=C$(2:6) yields A$=ABCDEFGHIJKLMNO

4 C$=B$ yields C$=ABCDE

5 B$=A$(1:10) yields B$=ABCDEFGHIJ

6 B$(3)=A%$(10:12) yields B$=ABJKL

FEATURES

1. The destination string (to the left of the assignment operator (= sign)) must be large
enough to hold the source string.

2. If no subscripts are specified (as in example 4 above) then the entire source string replaces
the entire string in the destination variable.

3. If one subscript is specified for the destination string (as in example 6 above) then the

destination string, beginning with the specified character is replaced by the specified

source string.

4, If two subscripts are specified for the destination string (as in examples 1, 2 and 3 above)
then they must satisfy all the rules given under the section on Subscripted String Variables.
Additionally, the first subscript of the destination variable must be no more than one larger
than the current logical length of the destination variable. The second subscript of the

destination variable must be no greater than the physical length of that variable.

5. If the source string is longer than the destination then the source string is truncated on
the right. If the source string is shorter than the destination, trailing blanks are appended

as necessary.

2.6.4 LEN Function

gives the logical length of a string in characters. For example,

9010 DIM AS[254]
9020 AS="ABC"

P@30 PRINT AS,
PP49 PRINT LEN(AS)
9950 AS[4]1="XY2Z"
PP60 PRINT AS,
PP70 PRINT LEN(AS)

pP80 END

RUN

ABC 3
ABCXYZ 6
DONE

2.6.5 String LET Statement

assigns the specified characters to a string variable. The verb LET is optional. For example,

String LET Statement Value of A$
0010 LET A$=“XYZ” “XYZ”
0020 A$(LEN(A$)+1)=AS “XYZXYZ”
0030 A$=A%(2) “YZXYZ”
0040 LET A$(2:4)=A$(3:5) “YXYZZ”

2-9

2.6.6 String IF Statement

compares two strings character by character, using their ASCII equivalents. String variables may
be subscripted in an IF statement. The first difference between the two strings determines their
relation and if one string ends before a difference is found, the shorter string is considered to be

smaller. For example, if A$=“ABC” and B$=“ABCD”’ then in the following example statements
40 through 100 test various kinds of relationships between A$ and B$.

p61¢ DIM AS[10],BS$[10],2Z2$[1]

#0290 READ AS$,BS

9030 DATA "ABC","ABCD"

0040 IF A$ <= BS THEN PRINT "LINE 40 TRUE"

PG50 IF A$>B$ THEN PRINT "LINE 50 TRUE"

#0660 IF A$=B$ THEN PRINT "LINE 60 TRUE"

8076 IF AS[1@:10]=" " THEN PRINT "LINE 70 TRUE"
#0806 IF AS[10:10]=B$[10:106] THEN PRINT "LINE 80 TRUE"
0096 zs=""

0100 IF A$[10:10]=Z$ THEN PRINT "LINE 100 TRUE"
8110 END

RUN

LINE 40 TRUE
LINE 78 TRUE
LINE 80 TRUE

DONE

Compound string IF statements of the form
0013 IF A$(1:1)=“A” AND B$(1:1)=“A”’ THEN 1000

are not allowed.

2.6.7 Strings in READ, DATA, PRINT and INPUT Statements
String variables may be freely mixed with numeric variables in READ, PRINT and INPUT statements.

When used in DATA statements or in response to INPUT statements, they may be mixed, but they
must occur in the proper positions as defined in their corresponding READ or INPUT statements,

and they must be enclosed in quotation marks.

2-10

There is one exception to this rule, when a string and only a string is to be entered on an input
line. Even in this case if the string is to contain leading blanks then it must be enclosed in quota-

tion marks. For example,

#9019 DIM AS[20],BS[20],CS$[20]
#0820 READ C$[1:13]

9030 DATA "NO. MARY AVE."
9040 INPUT AS,Bl

#0560 INPUT BS

P60 PRINT AS$;B$;B1;CS

PB78 END

RUN

?"BASIC ",650
?TIMESHARING, INC.
BASIC TIMESHARING, INC. 650 NO. MARY AVE.

DONE

2.7 INPUTTING DATA
2.7.1 READ and DATA Statements
SYNTAX

0013 READ variable,variable,variable
0023 DATA constant,constant,constant

FEATURES
1. A READ statement is used to supply data to the program.
2. The READ statement contains a list of variable names which are to be assigned values.

These values are obtained from the DAT A-list.

3. The DATA-list consists of all the values contained in all the DATA statements in the pro-

gram, linked together into a single list of data constants.

2-11

When a READ statement is executed new data is taken from the DATA-list. A pointer to this list
is moved to point at the next constant when a value is assigned to a variable by a READ statement.
The programmer must take care to order the constants in the DATA statements to correspond
with the variables in the READ statements both in data type and in dimension. In the example
below, the values 1 and 2 are assigned to the variables I and J respectively, the value of -2.5 is
assigned to the array variable element A(1,2), and the value ““ABCDEF” is assigned to the string
variable Z$.

0616 DIM A[2,2],ZS[11]

#0290 READ I,J,A[l,2]1,2$

p039 DATA 1,2

0640 DATA -2.5

9050 DATA "ABCDEF"

PP606 PRINT I;J;A[1,2];Z$[1:6]

#0760 END
RUN

1 2 -2.5 ABCDEF
DONE

2.7.2 RESTORE Statement

It is sometimes convenient to use the same data from a DATA Statement more than once. This

may be done by resetting the pointer, via a RESTORE statement.

SYNTAX

A. 0013 RESTORE
B. 0013 RESTORE linenumber

FEATURES

1. Syntax A restores the pointer to the first data item in the first DATA statement in the
program.

2. Syntax B restores the pointer to the first data item in the DATA statement specified by

the line number cited in the RESTORE statement.

The line number specified in Syntax B does not necessarily have to contain a DATA statement.
If it does not, then the pointer will be set to the first data item in the first DATA statement fol-

lowing the line number specified.
2-12

2.7.3 INPUT Statement
SYNTAX

A. 0013 INPUT variable,variable

B. 0013 INPUT “‘string’’,variable,variable
FEATURES
1. The INPUT statement seeks the values of the referenced variables from terminal keyboard

input, as READ statements do from DATA statements.

2. Data types and dimensions may be freely mixed in INPUT statements and the keyboard

input values must match the INPUT statement variables both in type and dimension.

When an INPUT statement is executed the system generates a prompt and then awaits the user’s

input. If Syntax A is used the prompt is a question mark. For example,

0010 DIM J$[254],K$[254]

#0920 PRINT "TYPE TWO SAMPLE STRINGS. ";
#0636 INPUT JS,KS$

ﬂg4ﬁ PRINT II*II;JS;H*";H *ll;Ks;ﬂ*ll

#0560 END

RUN

TYPE TWO SAMPLE STRINGS. ?"FIRST STRING","SECOND STRING"
FIRST STRING *SECOND STRING*

DONE

Syntax B requires that each input string be entered on a separate line. This enables the user to
include embedded quotation marks and leading blanks in an input string, since the string itself

need not be enclosed in quotation marks. For example,

0010 DIM J$[254],KS$[254]

#0820 INPUT "TYPE TWO SAMPLE STRINGS. ",J$,KS
ﬂﬂ3ﬂ PRINT Il*ll;Js;n*ll;‘ll *";Ks;"*"

#0406 END

RUN

TYPE TWO SAMPLE STRINGS. A "QUOTED" WORD
??"A QUOTED STRING"
A "QUOTED" WORD *"A QUOTED STRING"*

DONE

2-13

’ 2.8 OUTPUTTING DATA

BASIC-X provides the user with a wide range of output formatting capabilities. This section dis-
cusses these capabilities, beginning with the easiest to use and progressing to those which offer

the user maximum control over output formats.
The major output formatting features covered in this section are:

The PRINT statement

The MAT PRINT statement
The CARriage command

The TAB function

The CHRS$ function

The PRINT USING statement
The IMAGE statement

Ne s w

2.8.1 PRINT statement

SYNTAX
0013 PRINT expression,expression

FEATURES

’ 1. A PRINT statement causes the data following the word PRINT to be output at the terminal

and formatted according to certain rules.

2. Expression is a BASIC expression.

3. Data types may be mixed within a PRINT statement expression list.

4. String constants must be enclosed in quotation marks.

5. Each expression must be followed by a comma or a semicolon separator, with two exceptions:

A. string constants need no separators since they are already separated by the quotation
marks which enclose them

B. the last expression in a data list may have no separator following it, and
6. A separator which follows the last expression has a special purpose in a PRINT statement.

1. Comma and semicolon separators may be mixed within a PRINT statement expression list.

When it refers to printing, the word ‘‘default” means that the output format has not been expli-
citly specified by the user. Any PRINT or MAT PRINT statement is a statement for which a
@ default output format will be used, while any PRINT USING statement results in output whose
format has been specifically designed by the user.
2-14

2.8.2 Field Widths

When the system encounters a PRINT statement, for each expression to be output, the carriage is
spaced to the right to the next closest field’s first print position. Qutput of the expression begins
in that position and fills the next N character positions where N is the number of characters or digits
in the item. If the carriage is already in the first print position of a field, then printing begins in that

position. Qutput data items are left justified in their fields when the PRINT statement is used.

2.8.3 Comma Delimiters

When all data items are separated (delimited) by commas, the computer breaks the carriage into
15-character fields for output. Each data item is printed in a separate field. The table below shows
the first and last character position and the width of the fields on a standard width teleprinter car-
riage (72 characters) and on a wide (132 characters) teleprinter carriage. Note that on both types

of carriages the last field is only 12 characters wide.

1 2 3 4 5 6 1 8 9

Narrow Carriage — 72 Characters

First Position 0 15 30 45 60

Last Position 14 29 44 59 171

Characters 15 15 15 15 12
Wide Carriage — 132 Characters

First Position 0 15 30 45 60 75 90 105 120

Last Position 14 29 44 59 74 89 104 119 131

Characters 15 15 15 15 15 15 15 15 12

2.8.4 Semicolon Delimiters

When the semicolon delimiter is used the resulting output is packed. In the case of strings, the
semicolon delimiter causes the strings to be output end to end. In the case of numeric expressions,
the rules for packed output are more complex, although as for packed strings, the field widths for

packed numbers depend on the sizes of the numbers.

A. As is true with comma delimiters, all numerics followed by semicolon delimiters are
printed with the first character position reserved for a minus sign. If the number is posi-

tive, the first character posifion in the field is left blank.
B. Integers of one, two or three digits are packed in six-character fields.

C. Integers of four or five digits are packed in nine-character fields.

2-15

' D. Integers of six digits are packed in twelve-character fields.
E. Non-integers are packed in twelve-character fields.
F. Numbers of greater than six significant digits are dealt with later in this chapter.
The results produced when printing strings separated by commas and by semicolons are contrasted
below.

LIS

0016 DIM AS[10]
0020 AS="ABCDEFGHIJ"
0930 PRINT AS$,AS$,AS

#9040 END

RUN

ABCDEFGHIJ ABCDEFGHIJ ABCDEFGHIJ
DONE

3@PRINT AS$;AS;AS

LIS

0020 AS="ABCDEFGHIJ"
@030 PRINT AS$;AS$;AS
@048 END

RUN

’ pB10 DIM AS[10]

ABCDEFGHIJABCDEFGHIJABCDEFGHIJ

DONE

The first time the program is run, commas are used in LINE 30 to separate the three iterations of
A$. Each occurrence of A$ is printed in a discrete 15-character field. LINE 30 is then modified
to use semicolon separators and the program is listed, then run again. This time each occurrence
of A$ is printed in its own 10-character field. Had there been three different strings of three dif-
ferent lengths to be printed in LINE 30, each string would have been printed in a field size that
exactly matched its particular length.

2-16

Consider the case where the strings to be printed are too large for a default 15-character field:

9019 DIM AS[16]
0020 AS$S="ABCDEFGHIJKLMNOP"
@030 PRINT AS$,AS,AS

#8040 END

RUN

ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP ABCDEFGHIJKL
MNOP

DONE

Where the comma delimiters are used, the 16th character of A$ spills into the adjacent 15-character
field on the right, so the next occurrence of A$ must begin in the first print position of the next
available 15-character field. Contrast this with the output result where semicolon delimiters are

used:

30 PRINT AS;AS$;AS
RUN

ABCDEFGHIJKLMNOPABCDEFGHIJKLMNOPABCDEFGHIJKLMNOP

DONE

2.8.5 Terminating Delimiters

The phrase “‘terminating delimiter’’ refers to the delimiter which follows the last expression in a
PRINT statement. If a terminating delimiter is present, it suppresses output of the linefeed and
carriage return. The system will output linefeed and carriage return when printing reaches the
logical end of the current line. Logical line length is subject to user control. See the CAR-n

command.

Since it is legal to mix data types within a single PRINT statement expression list, the following
program yields,

9910 DIM BS[5],CS$[5],F$[6]

#9206 READ A,D,F,BS$,CS,FS

¢g93¢ DATA 2,4,8,"FOUR ","PLUS ","TIMES "
9040 PRINT B$;CS;BS;"=";F

9050 PRINT A;FS$S;A;"IS";:D;

9068 PRINT "AND";

9070 PRINT D;FS$S;D;"EQUALS ";D*D

P80 END

RUN

FOUR PLUS FOUR = 8
2 TIMES 2 IS 4 AND 4 TIMES 4 EQUALS 16

DONE
2-17

2.8.6

MAT PRINT Statement

The MAT PRINT statement is used to output numeric arrays.

SYNTAX

0013 MAT PRINT array, array

FEATURES

1.

6.

The MAT PRINT statement causes the variable(s) following the word PRINT to be output

at the terminal in a column and row format which represents the shape of the array.
Array must be a numeric array variable.

Arrays must be delimited by commas or by semicolons except that the last array in the

list need not have a delimiter following it.

The last array in the list may be followed by a comma or a semicolon, as in the PRINT

statement data list.

If no delimiter follows the last array in the list, MAT PRINT handles the item as though

a comma followed.

Arrays are printed with one blank row between each array row.

In the example below, the comma delimiter is implied by the absence of a delimiter, and yields

the 15-character field format, one field for each column, and one line for each row.

LIS

0010
0020
pa30
0040
0050
@55
p060
0a70
0080
0090
0100

DIM A[2,3]1,BI[2,3]
z=1
FOR I=1 TO 2
FOR J=1 TO 3
A[I,J]=2
B[I,J]=%2+10
Z2=7+1
NEXT J
NEXT I
MAT PRINT A,B
END

2-18

RUN

1 2 3

4 5 6

11 12 13

14 15 16
DONE

In the next example, the same output format is implied, but there are more elements in each row

than can be printed on one line. The system outputs a carriage return and a single linefeed and
continues to print the remaining elements in the current row. After the last element in the current
row has been printed, the system outputs one carriage return and two linefeeds and begins to

print the next array row.

0016 DIM A[3,6]

0020 FOR I=1 TO 3
0030 FOR J=1 TO 6
0040 A[I,J]=I+(J-1)
pa50 NEXT J

po60 NEXT I

9870 MAT PRINT A
9980 END

RUN

DONE

2-19

2.8.7 Logical Line Length

Logical line length refers to the number of characters to be output on one line by one or more
PRINT statements. In the case where the length of an output line is greater than the logical
carriage width, the system generates a carriage return delay as it does at the end of any line of

output. For example,
0018 DIM AS$[254]

@020 AS$S="THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG’S BACK"
#0930 PRINT AS

@040 END

CAR-72

RUN

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG’S BACK
DONE

CAR-40

RUN

THE QUICK BROWN FOX JUMPED OVER THE LAZY

DOG 'S BACK

DONE

2.8.8 TAB Function
SYNTAX

0013 PRINT expression;TAB(X);expression
FEATURES

1. The TAB function moves the carriage to the right to the character position specified by
the value of X,

2. X is an integer expression.

3. X must be less than the physical carriage width, or the logical carriage width, whichever is
smaller.

4. The TAB function inserts the number of blank spaces necessary to move the carriage to

the required position, and will not move the carriage backwards.

The TAB function permits forward placement of the carriage to a character position of the user’s
choice, subject to the rules above. X represents the absolute character position to which the

carriage will space. The left-most character position is number 0.
2-20

LIS

#8186 DIM Z[3,3]

9020 MAT READ 2

#9306 DATA 17,18,26,14,72,3,8,105,39

8048 MAT READ Y[1,3]

#0850 DATA 123456.,234567.,345678.

@060 PRINT "HEADING 1";TAB(15);"HEADING 2";TAB(3@); "HEADING 3"
8078 PRINT "—--——————- "+TAB(1l5) ;" "~-———————e "+TAB(30) ;"——=====—= "
0080 PRINT

#0909 MAT PRINT 2,Y

9160 END
RUN
HEADING 1 HEADING 2 HEADING 3
17 18 26
14 72 3
8 105 39
123456. 234567. 345678.
DONE

2.8.9 CHRS Function and ASC Function

The CHRS$ function converts its numeric argument to the corresponding character on the ASCII key-

board. The syntax is,

A. 0013 PRINT CHR$(X)
B. 0013 PRINT USING specifier;expression, CHR$(X)

FEATURES

1. The CHRS$ function can only be used in PRINT and PRINT USING statements.

2. X is a numeric constant, variable or expression which is evaluated modulo 128 to the nearest
integer.

The character which is output by CHR$ is determined by the value of the argument. For instance, the

statement
0013 PRINT CHR$(74)

will output the letter J and the statement
0013 PRINT CHR$(42)

will output the * symbol. A table of the ASCII characters and their numeric representations appears

in Appendix B.
2-21

The ASC function converts the first character of a string to its numeric ASCII code representation.
The syntax is,

A. 0013 PRINT ASC(string)
B. 0013 X = ASC(string)

FEATURES
1. string may be a string constant enclosed in quotes, or a string variable, subscripted or not.
2. If string is of length zero, the ASC function will return the value -1.

2.8.10 PRINT USING and IMAGE Statements

PRINT USING and IMAGE are forms of the PRINT statement which give the user absolute con-

trol over output formats through a group of letters and symbols which are called format specifiers.
SYNTAX

A. 0013 PRINT USING “‘specifier, specifier’ expression,expression

B. 0013 X$=*“specifier,specifier”
0023 PRINT USING X$;expression,expression
C. 0013 PRINT USING XX;expressionh,expression
00X X IMAGE specifier,specifier
FEATURES
1. PRINT USING outputs data according to a format specifier set which is declared by the user.
2. In SYNTAX A the format specifier string is enclosed in quotation marks in the PRINT
USING statement.
3. In SYNTAX B the format string is stored in a string variable referenced by the PRINT

USING statement, elsewhere in the program.

4. In SYNTAX C the format string is defined in an IMAGE statement referenced by the PRINT
USING statement, elsewhere in the program.

5. A semicolon always separates the format string from the expression list.
6. Expression may be any numeric expression or a string variable, but may not be a string
constant.

The format specifiers have implicit data type, and the data type must match that of the data item
being formatted. In addition, for every data item to be formatted, there must be a format speci-

fier set to accommodate the output.

2-22

SPECIFIER
for strings
X
A

/

for numerics

D

=

~ N X »

for example,

RESULT

Inserts a space between characters in a string.
Outputs one character of a string.

Outputs an X-OFF, Carriage Return, Linefeed.

Outputs a decimal point.

Outputs a numeric digit.

Converts a numeric value to E notation and provides four extra spaces for the
exponent, e.g., E £NN.

Outputs the sign of a numeric value.

Outputs a space between numeric digits.

Outputs leading numeric zeros.

Outputs an X-OFF, Carriage Return, Linefeed.

901¢ PRINT USING "DDDD.DD";399+702.02

#9020 END
RUN
1101.02
DONE

In the example above, the specifier set “DDDD.DD” allows for up to four digits to the left of the

decimal point and up to two digits to the right of the point.

Where there are too few digits provided for in the specifier string, the output value is converted

to E notation.

LIS

9816 PRINT USING "DDD";4444

38020 END
RUN
+4.44400E+4+03
DONE

2-23

Where too few characters are provided for in formatting a string variable, the string is truncated.

9919 DIM J$[7]

0020 J$="EXAMPLE"

g3 PRINT USING 40;J$
goag IMAGE AAAA

go50 END
RUN

EXAM
DONE

2.8.11 Replicators

A shorthand way of declaring multi-character or multi-digit specifiers is to use replicators. For

example,
0013 PRINT USING “4D.3D”’;4607.235

means the same as 0013 PRINT USING “DDDD.DDD”’;4607.253.

2.8.12 Specifier Sets

A specifier set comprises all format specifiers necessary to output one formatted expression.
Spaces to be inserted between data items by the X specifier may either be treated as separate sets,
or may be appended to the beginning or the end of a set. Spaces to be inserted within an expres-

sion must be included within that specifier set.
Data items in a PRINT USING statement expression list may be selectively omitted from output.

For every data item which is to be omitted from the output, there must be a comma in the proper

position in the specifier list. For example,

LIS

@010 READ A,B,C

@020 DATA 10,99,20

@030 DIM ZS$[17]

g040 2$="2D,X, ,S2D.3D"

P050 PRINT " DATA ITEM “B° IGNORED - (";ZS$;")"
@060 PRINT

@070 PRINT USING Z$;A,B,C

0080 2Z$[6:10]1="3DE,X"

9090 PRINT

9100 PRINT

91160 PRINT " DATA ITEM “B° INCLUDED - (";2S$;™)"
9120 PRINT

#1360 PRINT USING Z$;A,B,C

#1406 END

2-24

RUN

DATA ITEM ‘B° IGNORED - (2D,X, ,S2D.3D)

190 +20.000

DATA ITEM ‘B INCLUDED - (2D,X,3DE,X,S2D.3D)
190 990E-01 +20.000

DONE

Line 40 of the program defines the specifier sets for the variables A and C, and in place of a speci-
fier set for the variable B a comma appears. Line 50 prints a heading which shows the present

form of the specifier string, Z$. Line 70 outputs the variables in the PRINT USING statement.

Line 80 includes in the specifier string a specifier set for the variable B (3DE,X), and Line 110
prints a second heading which shows the modified form of the specifier string, Z$. Line 130 is

identical to Line 70. The only difference is that Z$ now contains a specifier set for the variable B.

Below are some examples of the format of output generated by PRINT USING format specifier

sets.

LIS

gogl PRINT USING "DDD";123

ggg2 PRINT USING "ZDD"; 4

90093 PRINT USING "DDS";5

gog4 PRINT USING "4D";-6

9@@5 PRINT USING "S3D";7

goge PRINT USING "DSDD";-890
goa7 PRINT USING "SDD.DD";3.25
2098 PRINT USING "DS4D";=-37

2099 PRINT USING "DDX3D.DD";-1567.89
golg PRINT USING "D.3DE";3.14159
go11 PRINT USING "DE";378

gg12 PRINT USING "DDD";-444

gg13 PRINT USING "D/D";1,2

gala END

2-25

RUN

123
g4
5+
-6
+7
8-90
+3.25
- 37
-1 567.89

3.142E+00
4E+@2

-4.44000E+02

1
2

DONE

Notice that the output from line 12 of the program is set off from other output by an extra line feed
before and after it. This is because the format specifier set was insufficient by one character place to

accommodate the data.

2.8.13 Numeric Formatting Rules

1. There must be at least one D specifier.

2. There must be only one S specifier (which may be omitted).

3. There must be only one . specifier (which may be omitted).

4. There must be only one E specifier (which may be omitted). If used, it must be the last

character in the specifier set.
There may be any number of X specifiers (which may be omitted).
There may be any number of Z specifiers (which may be omitted).

There may be any number of / specifiers (which may be omitted).

2-26

2.8.14 Carriage Control

In addition to the ability precisely to format letters and numbers on the printed line, the user can

control the format of lines on the printed page. The following are available:

SYMBOL FUNCTION
+ suppresses LINEFEED
- suppresses X-OFF and CARRIAGE RETURN
suppresses X-OFF, CARRIAGE RETURN and LINEFEED
N¢ outputs a LINEFEED
o° outputs a CARRIAGE RETURN
X¢ outputs a NULL
Y¢ outputs a FORM FEED

The first three symbols in the list, (+, — and #) are called Carriage Control Specifiers. The rules

governing their use are:

1. If no Carriage Control Specifier is used, then PRINT USING statements output X-OFF,
CARRIAGE RETURN, LINEFEED in that order, after each formatted line of output.

2. Use of a Carriage Control Specifier is not mandatory.

3. Only one Carriage Control Specifier is permitted in a format string.

4. If used, the Carriage Control Specifier must be the first character in the format string.

For example,

ﬂﬁlﬂ E$=","

gR28 DIM AS$[28],BS$[28],Cs$[7],¥Y$[4],2$[3]
gp39 AS$="THIS SENTENCE IS AN EXAMPLE "

go4g B$="OF THE '#' CARRIAGE CONTROL "

2050 C$="SYMBOL.,"

ggeg YS="#28A"

ﬂﬂ7ﬂ Z$="lﬂA"

pgosg READ E,F,G,H

gaog DATA 1008,200808,389888.,4.E+86

g1o9 PRINT USING Y$;AS$

g11p PRINT USING YS$;BS

g12g PRINT USING Z$;C$

#1309 PRINT

g149 PRINT "HERE IS AN EXAMPLE OF THE '+' SYMBOL:"
#1598 PRINT USING 164;E,F,G,H

#1690 IMAGE+DX3D, 3X, 2DX3D, 3X,3DX3D,3X,DX3DX3D

g17g8 PRINT USING "A";TAB(l),E$,TAB(18),E$,TAB(20),ES,TAB(28)
+ES,TAB(32) ,ES
g18g END

2-27

RUN
THIS SENTENCE IS AN EXAMPLE OF THE '#' CARRIAGE CONTROL SYMBOL.

HERE IS AN EXAMPLE OF THE '+' SYMBOL:
1,098 20,080 309,808 4,008,899

DONE

The format control characters, N®, O¢, X€ and Y€ permit output of a LINEFEED, a CARRIAGE
RETURN, a NULL or a FORM FEED respectively, to occur anywhere in the formatted output.

The rules governing their use are,

1. The format control character is a string and must either be enclosed in quotes or must be
assigned to a string variable.
2. Format control characters used in the data item list of a PRINT USING statement require

an “A” format specifier for each format control character used. For example,

poLe DIM z$[2]

92§ DIM AS[5],B$[3],C$[2],D$14]
2939 A$="THIS "

ggag BS="Is "

ggsg C$="A "
13 1Y) D$="TEST"
9979 REM ***** 7$="CONTROL N"
ggsg Z$=" n
2098 PRINT USING 1@@;A$,2$,BS,%$,C$,2$,DS
g199 IMAGE 5A,A,3A,A,2A7,A,4A
#4119 END
RUN
THIS
IS
A

TEST

DONE

2-28

3. Like all strings, the format control characters may be used in the data item list of a PRINT
USING statement, only as string variables and not as literal strings, and they can be used in
the format specifier list only in IMAGE statements. For example,

ga1p DIM A§$[4]
2329 A$="TEST"

#0925 REM ***** IMAGE 4A,"CONTROL N",4A,"CONTROL N, O",4A,"CONTRO
N",4A
2939 IMAGEA4A,"" ,4A,"" ,4A,"", AA
gpag PRINT USING 30;TAB(5),AS$,AS,TAB(3),AS$,AS
pgp508 END
RUN
TEST
TEST
TEST
TEST
DONE

Since control characters are non-printing, Line 25 serves to inform the user which format control

characters are used where in Line 30. The use of the TAB function in Line 40 is purely cosmetic.

29 STRING ARITHMETIC

The BASIC-X string arithmetic facility provides the user with the ability to store and manipulate
decimal numbers. This is particularly useful when it is necessary or desirable to work with num-
bers having more than six significant digits. String arithmetic may be performed only in LET and

implied LET statements.

SYNTAX
0013 LET R$=M$ operator N$

FEATURES
1. Strings may vary in length from 1 to 254 characters, inclusive.
2. Operand strings may contain any characters except that:

a. only one sign (+ or -) is allowed per string operand
b. only one decimal point (.) is allowed per string operand

c. astring with no numeric characters is not a valid operand string

3. The numeric characters 0 through 9 are legal parts of string numbers.
4, A sign (+ or -) and/or a decimal point (.) may appear in any position.
5. Any characters other than those mentioned in items 3 and 4 above will be ignored and

will not appear in the result.
2-29

When using string arithmetic the legal operators are = (assignment) + (addition), —(subtraction)
and * (multiplication). (String division may be done by a utility program.)

For example,

0120 AS$S=BS+CS$

gl3ﬂ A$=A$*“2"

0140 AS=C$-DS$[1:5]

@150 DS$[7:108]1=DS$[1l:5]*"1.5"

8160 D$=C$+P$[5]

#1706 M$=C$*DS$[7]

The string variable in which the result of the operation will be stored must be dimensioned to be
large enough to hold the entire result. If it is not large enough then the result string will be trun-
cated on the right to fit the variable. This may change the magnitude of the result and no warn-
ing is given.

The first position of the result string is always either blank or a minus sign, and the result is always

left justified with no leading zeros except that a decimal point is always preceded by a digit.

For addition and subtraction, the number of digits to the right of the decimal point in the result

is equal to the greater number of digits to the right of the decimal point of the operands.

For multiplication, the number of digits to the right of the decimal point in the result is equal to

the sum of the digits to the right of the decimal point in the two operands.

If there are no digits to the right of the decimal point then the decimal point is omitted. The

result string ends immediately after the last numeric character.

2.9.1 VAL Function
SYNTAX

0013 R=VAL(Z$)

FEATURES

1. The VAL function converts numeric strings to numeric values.
2. R is a numeric scalar variable.

3. X$ is a numeric string.

Using the form of VAL shown above, the operand string may contain nothing but numeric char-
acters and the optional “+”’, “~"> and/or *‘.”’. Further, the operand string must conform to the

rules for numeric strings.

2-30

It is possible to convert a string containing non-numeric characters, provided that the string con-

forms to the rules for numeric strings in all other respects. For example,

LIS

P010 DIM AS[25]

9020 AS$S="ABC+DE.FG123HIJ"
0030 Z=VAL(AS)

0040 PRINT Z

0050 END

RUN

BAD FORMAT FOR STRING NUMBER IN LINE 30

STOPPED AT 490
XI?END

DONE

23 PRINT AS

25 A$=AS+"0"
27 PRINT A$
LIS

#0106 DIM AS[25]

0020 AS="ABC+DE.FG123HIJ"
@023 PRINT AS

PP25 AS=AS+"g"

@827 PRINT AS

6030 Z=VAL(AS)

P940 PRINT 2

@358 END

RUN

ABC+DE.FG123HIJ
9.123
.123

DONE

The first version of the program tries and fails to convert the string A$=“ABC+DE.FG123HIJ" to
a numeric value, (LINE 30). In the second version, a string ““0’’ is added to each character of A$
(LINE 25). This operation removes the non-numeric/non-arithmetic characters from A$ while

performing the addition. The string result stored into A$ contains no extraneous characters.
2-31

2.10 MATRIX ARITHMETIC
NOTE: for a general discussion of arrays, see Section 2.2.

In order to handle all of the elements in an array as a single entity, the array must first be dimen-

sioned and defined.

2.10.1 DIM Statement
The DIM statement declares the size and the dimensionality of an array.
SYNTAX

A. 0013 DIM X(2)

B. 0013 DIM X(Y,Z2)
FEATURES
1. The DIM statement reserves storage for arrays and sets upper bounds on subscripts. Arrays

that do not appear in DIM statements are automatically given upper bounds of 10 or 10,10

the array being of one or two dimensions, respectively.

2. The bounds of an array may be changed dynamically in other matrix description statements
such as MAT READ, so long as the storage requirement specified in these statements does
not exceed that specified in the DIM statement for that array, or the 10,10 limitation, if

no DIM statement is declared for the array.

3. Several arrays may be dimensioned by a single DIM statement, and several DIM statements
may be used in a single program, but no single array may be cited in more than one DIM

statement.

4. An array may be re-dimensioned as many times as required in MAT READ and MAT

INPUT statements, within the constraints described further on in this chapter.

5. DIM statement parameters must be integer constants.

2.10.2 MAT READ and MAT INPUT Statements

Both the MAT READ and the MAT INPUT statements assign values to the elements of an array,

and both may be used to declare the logical dimensions of an array.
SYNTAX — MATREAD

A. 0013 MAT READ X

B. 0013 MAT READ X(Y,Z)
2-32

FEATURES

1.

Syntax A assumes that the array named X is dimensioned elsewhere in the program, and
the MAT READ statement will seek in DATA statements the number of numeric values
that the array is to contain. (This is stated in the most recent previous array declaration
statement. For example, if the statement DIM X(4,5) were used, the MAT READ state-

ment would look for 20 numeric elements to fill an array of 4 rows of 5 columns each.)

Syntax B not only reads the values of X from DATA statements, it also assigns the logical
dimensions of X. The logical dimensions of X may or may not have been declared pre-
viously in another statement.

a. If the physical dimensions of X are declared in a DIM statement anywhere in the

program, then the product of the dimensions of X in the MAT READ statement must
not be greater than the product of the dimensions of X in the DIM statement, and the

dimensionality of X must not change. That is, if X was declared in a DIM statement
to be a one-dimensional array of 6 elements, then it cannot be declared in a MAT
READ statement to be a two-dimensional array of any size. The reverse is also true.

An example of this application of the MAT READ statement follows.

LIS

9810 DIM X[4,4]
@020 MAT READ X
¢930 bpDATA 1,2,3,4,5,6,7,8,9,106,11,12,13,14,15,16
0049 MAT PRINT X;
@050 END

b. Where the logical dimensions of an array are declared only in MAT READ or MAT
INPUT statements, the array may be re-dimensioned as many times as necessary, to
any dimensions within the 10 or the 10,10 constraint, but may not have their dimen-
sionality changed. An example of this application of the MAT READ statement

follows.

LIS

9019 DIM X[2,9]

p020 MAT READ X[4,4]

0030 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
9040 MAT PRINT X;

P050 END

Two dimensional arrays are filled by rows, that is, the top row is filled from left to right,
then the next row down is filled from left to right, etc.
2-33

’ SYNTAX — MATINPUT

A. 0013 MAT INPUT X

B. 0013 MAT INPUT X(Y,Z)
FEATURES
1. The MAT INPUT statement works exactly the same way as the MAT READ statement

except that the values of the array are sought from terminal input instead of from DATA

statements.

2.10.3 ZER Function
SYNTAX

A. 0013 MAT X = ZER

B. 0013 MAT X = ZER(Y,Z)

FEATURES

1. The ZER function works exactly the same way as the MAT READ statement except that

it assigns numeric zeros to every element in the array without consulting a user-specified

‘w data list.

2. For example,

LIS

0919 MAT X=ZER[2,3]
#0260 MAT PRINT X;

| @830 END
i RUN
i] 0 0
/]] /]
DONE

2.10.4 CON Function

i@ SYNTAX
A 0013 MAT X = CON

B. 0013 MAT X = CON(Y,Z)
2-34

FEATURES

1. The CON function works the same way as the ZER function except that the array is filled

with ones instead of with zeros.

2. For example,

#9186 MAT X=CON[2,3]
8626 MAT PRINT X;

P030 END
RUN
1 1 1
1 1 1
DONE

2.10.5 IDN Function
SYNTAX

A. 0013 MAT X = IDN
B. 0013 MAT X = IDN(Y,Z)

FEATURES
1. The IDN function works the same way as the ZER and CON functions with two exceptions:

a. The matrix must be two dimensional and square (must have the same number of

columns as it has rows)

b. The IDN function assigns the identity matrix to the array variable

2. For example,

p918 MAT X=IDN[3,3]
0020 MAT PRINT X;

P930 END

RUN
1 0 0
0 1 0
0 0 1

DONE

2.10.6 Array Manipulation Statements

Once arrays have been dimensioned and their elements defined, they may be manipulated as single

entities. BASIC-X provides the following programming statements expressly for handling arrays.
2-35

MAT X=M

copies one matrix into another matrix of the same dimensions. For example,

0610 DIM X[3,3]1,Y[3,3]
@920 MAT INPUT Y
#0030 MAT X=Y

P940 END

MAT X = LR

does matrix addition or subtraction, element by element on matrices of the same dimensions.

For example,
0019 DIM X[3,3]1,L[3,3],R[3,3]
#0620 MAT INPUT L,R

0030 MAT X=L-R
0040 END

In both of the above statement types, the same matrix may appear on both sides of the equal sign.
MAT X = L*R

does matrix multiplication of L, and R. For example,

6910 DIM X[2,5],L[2,4],R[4,5]
8020 MAT INPUT L,R

#0380 MAT X=L*R

0040 END

In this case the same matrix must not appear on both sides of the equal sign.

MAT X =INV(Y)

assigns the inverse of a square matrix to a different matrix of the same dimensions. For example,
#0910 DIM X[3,3]1,Y[3,3]

60280 MAT INPUT Y

0030 MAT X=INV(Y)
9040 END

MAT X = TRN(Y)

assigns the transpose of a matrix to a different matrix of appropriate dimensions. For example,
9010 DIM X[2,4],Y[4,2]

0620 MAT INPUT Y

0030 MAT X=TRN(Y)
P40 END

2-36

MAT X = (expression)*Y

multiplies every element in the *“Y” matrix by the result of the “expression” parameter and assigns
it to a matrix of the same dimensions. In this case the same matrix may appear on both sides of

the equal sign. For example,

0016 DIM X[2,3]

0020 A=B=14

P036 MAT INPUT X
0040 MAT X=(A*(7/B))*X
0058 END

2-37

Chapter 3
PROGRAM STRUCTURE

The normal execution sequence of statements in a program is from the lowest to highest numbered
statement. For a variety of reasons the user may want to alter this sequence. BASIC-X offers the

programmer several convenient methods of modifying execution sequence.

3.1 END STATEMENT

No matter how the program execution sequence may have been modified, every program- must have

an END statement as its highest numbered line.

SYNTAX
9999 END

FEATURES

1. The END statement must appear at least once, as the highest numbered statement in any
program.

2. The END statement may appear many times in one program to allow many logical exit

points from the program.

Following are the methods at the programmer’s disposal for alterinig the normal program execution

sequence.

3.2 GOTO STATEMENT

A GOTO statement overrides the normal order of program statement execution by arbitrarily
directing execution control to a line other than the next higher numbered statement in the current

program.

SYNTAX
A. 0013 GOTO linenumber
B. 0013 GOTO expression OF linenumber,linenumber

FEATURES

1. Execution control is directed to the line number following the word GOTO in Syntax A, or

one of the line numbers following the word OF in Syntax B.

3-1

2. It is legal to GOTO non-executable statements such as REM statements. If this is done then
control passes to the first executable statement whose line number is greater than that

specified by the GOTO statement.

3. The referenced line number must exist in the program and it is not legal to specify a line

number greater than the highest numbered statement in the current program.

The multi-branch (or “computed’) GOTO statement (Syntax B) permits a selection of statements to
which execution control may pass, based on the evaluated result of the expression. If the expression

evaluates to a non-integer, then the result is rounded.

The expression to the right of the word GOTO must have a result in the range 1 to N where N is
the length of the linenumber list. If the result of the expression is greater than N or less than .5,
the execution control passes to the statement immediately following the GOTO statement. For

example,

9010 INPUT "B AND X2?",B,X
0028 GOTO B+X"2 OF 50,70,90
@330 PRINT "NO BRANCH"
8049 GOTO 160

#9560 PRINT "WENT TO 50"
0060 GOTO 100

#9070 PRINT "WENT TO 70"
#0880 GOTO 1040

609¢ PRINT "WENT TO 98"
0106 PRINT

8119 INPUT "MORE? ",AS$
0120 PRINT

#1306 PRINT

0140 IF A$="Y" THEN 10
9158 END

RUN

B AND X?20,0
NO BRANCH
MORE? Y

B AND X?20,1
WENT TO 59

MORE? Y

B AND X?1,1
WENT TO 70

MORE? Y

B AND X22,1
WENT TO 90
MORE? Y

B AND X?22,2
NO BRANCH

MORE? N

Line 20 of the program contains the computed GOTO statement. There are three line numbers in the

list following the word OF.
Line 30 is executed only if the expression B+X12 evaluates to less than .5 or greater than 3.

In five iterations of the program, the first and fifth iterations result in no branch. The first does
so because 0+012=0, and the fifth because 3+112=4. Both of these results are outside the .5 to 3

range required by the three line numbers referenced in Line 20.

33 IF... THEN... STATEMENT

The IF. . .THEN. . . statement can best be described as a conditional GOTO statement. Like the
GOTO statement, the IF. . . THEN. . . statement is used to modify the normal program statement
execution sequence, but the modification is done on a conditional basis, that is, only if the con-

dition specified by the expression actually exists.

SYNTAX

A. 0013 IF expression THEN linenumber

B. 0013 IF expression THEN statement

FEATURES

1. Expression may be any valid BASIC-X arithmetic or logical expression.

2. If the expression evaluates to zero then it is considered to be false, and if it evaluates to

non-zero (positive or negative) it is considered to be true.

If Syntax A is used, a ‘‘true’’ expression causes execution control to pass to the specified line number.

If “false”, then control passes to the statement immediately following the IF. . .THEN. . . statement.

3-3

If Syntax B is used, a “‘true’ expression causes the statement following the word THEN to be
executed, and if “‘false”, the statement following the word THEN is ignored, and control passes to
the statement immediately following the IF. . .THEN. . . statement. For example,

0610 K=1

@620 INPUT "ENTER N " ,N
P@30 IF N#5 THEN 50

0040 K=10

@050 PRINT "N= ";N;"K= ";K
#0600 END

RUN

ENTER N 3

N= 3 K= 1

DONE

RUN

ENTER N 5

N= 5 K= 10

DONE

34 FOR...NEXT... STATEMENTS
FOR and NEXT statements are used in conjunction to simplify the writing of program loops.

SYNTAX
0013 FOR V=B TO E STEP S
0023 NEXT V

FEATURES
1. The FOR statement specifies the counting variable (V above), its numeric range (B TO E
above) and the counting step size (STEP S above).

2. The NEXT statement increments the counting variable by the step size and then returns

execution control to the matching FOR statement.

3. FOR. . .NEXT.. . loops may be nested to any desired level. For example,

0010 DIM M[5,4]

0020 FOR J=1 TO 5

0030 FOR K=4 TO 1 STEP -1
0040 M[J,K]=(J+K)

2050 NEXT K

0060 NEXT J

0076 MAT PRINT M

pB8G END

4, Every FOR statement must have a corresponding NEXT statement, and every NEXT state-

ment must have a corresponding FOR statement.

The FOR. . NEXT. . . loop employs the following algorithm:
0100 FOR V=B TO E STEP S

0200 NEXT V

1. Evaluate the beginning value and the ending value (B and E above, respectively) for the

counting variable (V above).

2. Evaluate the step size if specified (S above) and if unspecified, then STEP =1,

3. LET V (counting variable) = B (beginning value).

4. IFS>0ANDV >EorIF S <0 AND V <E then GOTO step 7.

5. Execute all statements between the FOR statement and its matching NEXT statement.
6. NEXT statement: LET V = V+S and then GOTO step 4.

7. Execute the statement following the NEXT statement.

35 GOSUB. . .RETURN statements

GOSUB and RETURN statements are useful when a certain subsection of a program must be

executed repeatedly during a single execution of the program as a whole.

SYNTAX

A. 0013 GOSUB xxxy
xxxz RETURN

B. 0013 GOSUB X OF xxxa,xxxb,xxxc
xxxz RETURN

FEATURES

1. xxxy is a line number in the current program other than the line in which the GOSUB
appears.

2. The subroutine section of the program must end logically with a RETURN statement.

3. To avoid disrupting the logical flow of the program as a whole, the subroutine must not

be exited with any but a RETURN statement.

4. GOSUB’s may be nested 9 deep.

3-5

The system retains the line numbers immediately following those on which GOSUB statements
appear as addresses in a last-in-first-out stack. On encountering a RETURN statement, the system

passes execution control to the most recent address in the stack.

A given subroutine may contain several RETURN statements. This allows for several logical exit

points from the subroutine.

Syntax B behaves the same as a multi-branch GOTO statement and follows the rules given above
for GOSUB.

3.6 ON ERROR ... RESUME statements
The ON ERROR statement provides program controllable error handling capability. The syntax is,
0013 ON ERROR THEN linenumber

FEATURES

1. The ON ERROR statement sets a flag which causes execution control to pass to linenumber
if an error is encountered. (A list of possible errors and their codes appears at the end of
this Section.)

2. linenumber is assumed to be the first line of an error handling subroutine.

3. linenumber must be an integer constant.

The error handling subroutine is entered via the ON ERROR statement and is exited by the RESUME

statement. The syntax is,

A. 0013 RESUME
B. 0013 RESUME linenumber

FEATURES

1 Syntax A returns execution control to the line in which the error occurred.

2 Syntax B passes execution control to linenumber.

3. linenumber must be an integer constant

4 Execution of a RESUME statement re-sets REF(6) and REF(7) to zero. (See description

of REF function arguments 6 and 7 below.)
5. If a RESUME statement is executed before an ON ERROR statement, or after the ON ERROR

flag has been revoked, the diagnostic message
RESUME WITHOUT PRIOR ERROR
will be generated.
The ON ERROR flag is revoked as follows:

0013 ON ERROR THEN 0
3-6

FEATURES

1. If the ON ERROR flag is revoked during execution of an error handling subroutine in an
abortable program, the system will print the appropriate diagnostic message for the error
encountered and then go to Execute Immediate Mode as though the error flag had never
been set.

2. If the ON ERROR flag is revoked during execution of an error handling subroutine in a non-
abortable program, the system will print the appropriate diagnostic message for the error

encountered and then terminate the program by executing an END statement.

ON ERROR flags cannot be nested. If a second ON ERROR statement (other than ON ERROR THEN
@) appears in the program, including in an error handling subroutine, the error flag will be reset for
errors encountered subsequently, outside the error handling subroutine.

Pressing the BREAK key qualifies as an error. The system finishes processing the program statement

it was working on when the BREAK key was pressed and then the ON ERROR flag takes effect.

If a BREAK occurs during execution of an error handling subroutine in an abortable program, the
system will go to Execute Immediate Mode. If the BREAK occurs in a non-abortable program error
handling subroutine, the system will ignore the BREAK and finish executing the subroutine. WARN-
ING ONLY errors are not handled by the ON ERROR statement.

The REF function arguments 6 and 7 are used in conjunction with ON ERROR. REF(6) yields an
error code and REF(7) yields the number of the line in which the error occurred. An example of

how the REF function might be used follows:

113 ON ERROR THEN 7880

READ #1,X:BS (possible End-Of-File/End-Of-Record error)

313 PRINT #1;Z,BS (possible End-Of-File/End-Of-Record error)

soe 1 tese Y5 eese g eeee
N
=
w

@799 IF REF (6)=58 THEN 849

#71% ON ERROR THEN @ (revoke ON ERROR flag if error code # 50)
g8@@ IF REF(7)=213 THEN 980

#81¢ PRINT "NO MORE ROOM IN FILE"

¢82@ RESUME 323

#9484 PRINT "NO MORE DATA IN FILE"

#9198 RESUME 223

9999 END
3-7

3-9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

ERROR CODES RETURNED BY REF(6)

BREAK

timeout (4000-plus models)
reserved

undefined statement reference
NEXT without matching FOR
same FOR-variable nested
function defined twice
variable dimensioned twice
last statement not END
unmatched FOR

undefined function

array too large

array of unknown dimensions
out of storage

dimensions not compatible
characters after command end
invalid file mode

no such file

GOSUBs nested ten deep
RETURN without prior GOSUB
subscript out of bounds
negative string length
non-contiguous string created
string overflow

out of data

data of wrong type

undefined value accessed
matrix not square
redimensioned array too large
nearly singular matrix

LOG of negative argument
argument out of bounds

zero to zero power

negative number to real power

argument of SIN or TAN too big

3-8

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

bad file number

last input ignored, retype it
statement not IMAGE
non-existent file referenced
busy/protected file

no such program

chained program too large
write tried on read-only file
end-of-file/end-of-record

file abnormal/unavailable
I/O protocol error (special ports)
bad file name

bad file length

disk full

exceeds allocated space
directory full

duplicate entry

not a BASIC file

non-close file

file in use

RESUME without prior ERROR
common file declared twice
reserved

missing format specification
illegal or missing delimiter
no closing quote

bad character after replicator
replicator too large
replicator zero

multiple decimal points

bad floating point specification
illegal character in format
illegal format for string
missing right parenthesis

missing replicator

77 too many parenthesis levels
78 missing left parenthesis

79 illegal format for number
80 reserved

81 bad format for string number

3.7 LOCAL AND INTRINSIC FUNCTIONS

By definition, a function describes and solves for the mathematical relationship between two
variables (such as X and Y), such that for each value of X there is one and only one value of Y. In

other words, a function is a shorthand way of iterating a mathematical expression. For example,

PB13 B=5
P14 X=(1+(B*2))/3

may be represented

PB13 DEF FNZ(B)=(1+(B*2))/3

0614 Y=5

BB815 X=FNZ(Y)

For each iteration of FNZ only the value of the argument (B) need be defined. For example,
0013 A=FNZ(2*1.8)

is a legal way to ‘“call” the function FNZ.

In general the format for using a function in a program is,

0013 variable=function(argument)
or
0013 PRINT function(argument)

The argument to a function must be a numeric expression with a single number as its evaluated

result.

In BASIC-X there are two types of functions. They are called Local Functions and Intrinsic

Functions.

3.7.1 Local Functions

Local or user-defined functions are defined in and are local to user-defined programs or parts of

programs. The DEF statement is used to define a local function.

3-9

SYNTAX
0013 DEF FNX(Y) = expression

FEATURES
1. A local function may have only one parameter.
2. A local function is identified by a three-letter name, the first two letters of which must be

FN. There may be up to 26 local functions per program, one for each letter of the alpha-
bet, e.g., FNA, FNB,. . .FNY, FNZ.

3. For FNX(Y), Y is a dummy argument. When the function is actually used, the argument

may be any expression.

4. Any operand which is available to the current program including references to existing

functions may appear in the defining expression for a local function.

When a function is defined, e.g., 0013 DEF FNA(Z), the variable name in parentheses following
the function name ((Z) in this case) is called the formal parameter, or sometimes the dummy

parameter.

A function is ““called” when it is referenced in a program, having already been defined in the pro-

gram, e.g., 0013 A=FNA(Y+2).

When a function is called, e.g., 0013 A=FNA(Y+2), the expression in parentheses following the

function name ((Y+2) in this case) is called the argument or sometimes the ‘““‘actual parameter”.

3.7.2 Intrinsic Functions

Intrinsic functions are parts of the language itself and are available to every user. The intrinsic

functions available are:

FUNCTION PURPOSE
ABS(X) gives the absolute value of X
EXP(X) gives e (2.718281) to the Xth power
LOG(X) gives the natural logarithm of X
SQR(X) gives the square root of X
SIN(X) gives the sine of X
COS(X) gives the cosine of X
TAN(X) gives the tangent of X
ATN(X) gives the arctangent of X
INT(X) gives the largest integer < X

3-10

FUNCTION
SGN(X)

TYP(X)

RND(X)
RND(0)
RND(-N)
RND(N)

PURPOSE
gives 1ifX>0
0ifX=0
-1if X <0
gives the type of the next data to be read, either from a file or from a DATA
statement. The use of the TYP function for file data is described in Section
6.8.3. For data to be read from a DATA statement data list, the syntax for the
TYP function is
0013 A =TYP(0)
There are three possible results: 1 = numeric data, 2 = string data and
3 = out-of-data condition.
gives a random number
selects a number from a source which is unique to the user’s port
selects a number from a source which is referenced by all system ports
selects from the unique port source, a specific number which is implied by the
specific value of N. (There is no consistent relationship between the value of
N and the value of the random number that N selects, other than that the same
value of N will always cause the same number to be selected from the random

number list.)

The selection of a random number is made from a list of about 8 million numbers >0 and <1. The

list has 33 pointers: one common pointer for the system plus 32 different pointers, one for each

of the 32 system ports.

When the system sees a 0 as the argument to RND, it references that port’s pointer and makes a

random selection from the list, beginning where the port pointer currently rests. For example,

0019 INPUT
PR20 FOR

"HOW MANY SELECTIONS? ",Z2
J=1 TO 2

2030 PRINT RND(9) ;
0040 NEXT J

90590 END
RUN

HOW MANY SELECTIONS? 5

.648443
DONE

RUN

.979838 .510626 .223119 2.03642E-02

HOW MANY SELECTIONS? 9

.464033
.888236
DONE

2.94644E-02 .289146 .288182 6.71268E-02
.124827 .742629 .963338
3-11

Port pointers may be set to a specific position by declaring a specific positive argument to RND.
Thus, if the parameter to RND is 6, say, then regardless of how many selections are made from the
list, the selection will always be the specific number in the list which is associated with that specific

value of the RND argument. For example,

0916 INPUT "HOW MANY SELECTIONS?",Z2
0020 FOR J=1 TO 2

0830 PRINT RND(6) ;

0040 NEXT J

P850 END

RUN

HOW MANY SELECTIONS?4
.250422 .250422 .250422 .250422
DONE

The following program permits a variable number of random number selections, but insures that
every sequence of selections will be identical to all others, so far as it goes. (The value of .02 used
in line 10 is completely arbitrary.)

9910 A=RND(.02)

P920 INPUT "HOW MANY SELECTIONS? ",Z
0030 FOR J=1 TO 2

0040 PRINT RND(Q);

0050 NEXT J

P68 END

RUN

HOW MANY SELECTIONS? 4

.980846 3.35703E-02 .16256 .503207
DONE
RUN

HOW MANY SELECTIONS? 5

.980846 3.35703E-02 .16256 .503207 .168633
DONE
RUN

HOW MANY SELECTIONS? 6
.980846 3.35703E-02 .16256 .503207 .168633
DONE

To output integers in the range 0 to 99, line 40 of the above program might be written,
0040 PRINT INT(RND(0)*100)

3-12

349665

@ When the system sees a negative parameter to RND, it selects the number in the list where the
system pointer currently happens to rest. Groups of random numbers selected in this way cannot
be intentionally iterated. For example,

P91® A=RND(.02)

@920 INPUT "HOW MANY SELECTIONS? ",%Z
0030 FOR J=1 TO Z

0040 PRINT RND(-1);

p050 NEXT J

9968 END

RUN

HOW MANY SELECTIONS? 4

.306689 .537845 .696617 .940248
DONE
RUN

HOW MANY SELECTIONS? 5

8.94691E-02 9.68938E-02 .64532 .17754 .288125
DONE
RUN
b HOW MANY SELECTIONS? 6
.165621 .118697 .150467 .295455 9.95302E-02 .889207
DONE
FUNCTION PURPOSE
REF(X) gives the current program access to various kinds of system information. There

are seven parameter values to REF:

1 — gives the current time of day in tenths of a second (0 to 863999).

2 — gives the Julian date in the current year (1 to 366).

3 — gives the last two digits of the current year (e.g., 76)

4 — gives the user’s currently logged on account number where the account letter is
given numerically as the most significant digits, (i.e., A450 = 1450, D123 = 4123
or Z999 = 26999).

5 — gives the port from which this REF is being executed (0 to 31).

6 — gives error code (see ON ERROR statement).

T — gives error line number (see ON ERROR statement).

CHR$(X) prints the ASCII character which is represented by the number X. X must be in
the range 0—127. If it is outside this range, then it is converted modulo 128,
For further information, see Section 2.8.9.
” LEN(A$) gives the current logical length of a string in number of characters. A$ must be

a string variable.
3-13

FUNCTION PURPOSE

TAB(X) tabs to the character position specified by X. For further information, see
Section 2.8.8.

VAL(AS) gives the numeric value of digits in a character string. For further information,

see Section 2.9.1.

3-14

Chapter 4
PROGRAMS

41 COMPILER OPERATION

Phase One — is active during program entry. As each statement is typed, the compiler checks the
statement format and syntax and if correct, forwards the statement for inclusion in the current
program. If the statement is incorrectly formatted then it is not included in the current program

and a message is typed,
ERROR (no carriage return)

The user may type any single character such as a colon followed by a carriage return, and the
system will respond with a more detailed diagnostic. If the error is obvious to the user, then the
diagnostic may be aborted by striking only the RETURN key. The system is then ready for more

input.

Phase Two — is active at run time (on the user’s command that the program be executed). During

phase two the system

1. allocates space for arrays

2. checks to see that statements such as GOTO and GOSUB, which modify the normal exe-
cution sequence, refer to valid line numbers in the program
checks to see that FOR ... NEXT ... statements form proper loops
checks for END as the highest numbered statement in the program

For errors found during phase two, diagnostics are issued, program execution is terminated and
program entry mode control of the system is returned to the user. If no errors are found in phase

two then control passes to phase three.

Phase Three — executes the program statements one by one beginning with the line number speci-
fied in the RUN command. If no line number was specified in the RUN command, then execution
begins with the lowest numbered statement in the program. File statements are executed during
phase three. This establishes file buffers and linkages. Errors found during phase three are referred
to as terminal errors. These errors produce diagnostics and then place the system in Execute
Immediate Mode where execution of the current program is suspended without executing an END

statement. More information on how to use Execute Immediate Mode is given in Section 4.7.

4-1

4.2 PROGRAM STATEMENTS

A BASIC program consists of a group of BASIC statements. Each statement begins with an exe-
cution sequence number (or more simply stated, a line number), and each statement is typed on a

separate line.

4.3 LINE NUMBERS

Line numbers are positive integers in the range 1 to 9999, and denote the order in which the various
program statements will be executed when the program is run. Each statement describes, through
its particular combination of key verbs and mathematical operators, one or more actions to be

taken by the computer.

Statements need not be defined in the same order as their intended execution sequence. The com-
r;uter will arrange the statements in ascending numerical order based on their line numbers, regard-
less of the order in which the statements were entered. If a statement is typed with the same line
number as a statement already in the program, the most recent version of that line/statement will
replace the earlier entry. To delete a statement entirely, type only its line number and strike the
RETURN key.

44 ENTERING A PROGRAM

It is good practice to number statements in increments of at least ten. By defining only every tenth
available line as a BASIC statement, convenient ‘“spaces’ in the program are available for insertion

of new or previously omitted statements. For example,

9010 PRINT AS
9020 END
RUN

DONE

as the program is defined above, the computer will print a NULL when line 10 is executed. A state-

ment (number 5 in this case) can be inserted to specify A$ to be the word EXAMPLE.

4-2

9005 AS="EXAMPLE"

LIS

P05 AS="EXAMPLE"
0010 PRINT AS
0020 END

RUN

STRING OVERFLOW 1IN LINE 5

STOPPED AT 19
XI?END

This is still an error in the program, and causes the system to go to Execute Immediate. Execute
Immediate is exited by typing a carriage return and then a line containing a DIM statement for
A$ must be added to the program so that the value of A$ can be assigned.

g061 DIM AS[7]

P985 AS="EXAMPLE"
#9010 PRINT AS$

0020 END
RUN
EXAMPLE
DONE

Each of the four lines in the example above is a program statement. Note that the last statement

(highest numbered statement) in the program is and must be an END statement.

45 RENumber COMMAND

At this point it is desirable to renumber the program statements in such a way that the chosen line
numbering increment is again constant, without changing the execution sequence of the statements.

This is done by using the RENumber command. For example,

PBA1 DIM AS[7]
0005 AS="EXAMPLE"
#9190 PRINT AS
#0286 END

4-3

REN—lﬂ,lﬂ,l,zg
LIS

P010 DIM AS[7]
0020 AS$S="EXAMPLE"
#0380 PRINT AS
9040 END

In general, the RENumber command is used to give program statements a constant numbering

increment.

SYNTAX

REN-new,increment,start,stop

“New” will be the number of the first renumbered statement.
“Increment’’ will be the size of the numbering increment.
“Start’’ was the number of the first statement to be renumbered.

“Stop” was the number of the last statement to be renumbered.
All four parameters are optional and if omitted, their default values are,
REN-10,10,1,9999

If the parameters are specified in such a way as to threaten the existing sequence of the program

statements, the system responds,
SEQUENCE NUMBER OVERLAP

Any line number references in the program such as those in GOTO statements, are changed to

match the renumbered section of the program, if applicable.

4.6 LISTING AND RUNNING A PROGRAM
To review all of the program statements, the LISt command is used.

SYNTAX
LIS-n
Causes the statements in the current program to be listed in ascending numeric sequence. The n

parameter is optional and, if omitted the program statements are listed starting with the lowest

4-4

D numbered statement in the program. If the n parameter is specified, then the program is listed
starting with the statement number n, or the next higher statement number if n does not exist

in the current program.
To execute the program the RUN command is used.

SYNTAX
RUN-n

Causes the current program to be executed. The n parameter is optional and, if omitted, the
program is executed beginning with its first statement. If the n parameter is specified, then the
program is executed starting with the statement number n, or the next higher statement number

if n does not exist in the current program.

Program execution may be suspended by striking the BREAK key once. The exception is if the
program is awaiting user input. In this case program execution cannot be suspended. The system
prints the remaining contents of the output buffer which could contain as many as 300 characters
(30 seconds’ worth on a 110 baud port) plus any line feed delays and/or carriage return delays
that have been set. The system types

STOPPED AT line

@ X192

XI? indicates that the system is in Execute Immediate Mode.

Program execution may be aborted (if the program has ABOrtable status) by striking the BREAK
key twice. The exception is if a program is awaiting user input. In this case program execution
cannot be aborted. The contents of the output buffer are lost, and the system types,

ABORT

and returns to program entry mode.

A program awaiting user input may be terminated by typing control C (C¢ — hold down the
CONTROL key and strike the letter C key) followed by carriage return.

4.7 DEBUGGING A PROGRAM

During program entry it is sometimes convenient for debugging purposes, to be able to test alterna-
tive programming methods. The Execute Immediate Mode gives the user the ability to try different
statements without executing the program anew for each alternative to be tried. The user may

activate Execute Immediate by including STOP statements at appropriate points in the program.

SYNTAX
@ A. 0013 STOP
B. 0013 IF expression THEN STOP

4-5

FEATURES @
1. The STOP statement suspends program execution and enters Execute Immediate Mode.
Once the computer is in Execute Immediate, the user has three options:

1. Execution of the current (suspended) program may be resumed by typing
GOTO linenumber

where linenumber is any line in the current program. The computer would then be in

program execution mode.

2, BASIC statements may be executed one at a time and without line numbers. The computer

remains in Execute Immediate Mode until either option 1 or option 3 is implemented.

3. Execution of the remaining portion of the current program may be elided by typing
END -carriage return-
or
C¢ -carriage return-
or

carriage return

The computer would then be in program entry mode ready for entry of program statements, or

program or command execution.

In Execute Immediate Mode the computer accepts any input as a BASIC statement without a line
number, and such statements are executed immediately after they are entered. Only COM, DATA,
DEF, DIM, FOR, REM and IMAGE statements are disallowed in Execute Immediate.

The usefulness of Execute Immediate is in its application as a program debugging tool. STOP state-
ments may be placed at strategic points in a program and when execution is suspended the values
of program variables may be checked, the contents of files and locations of file pointers verified,
or alternative program statements tested. Program statements in Execute Immediate are not pre-
ceded by line numbers, and any variable names used in Execute Immediate must already have been

mentioned in the currently suspended program. For example,

9910 A=B=C=D=E=F=1

90290 STOP
9930 END
RUN

STOPPED AT 30
XI?PRINT A+B
2

XI?A=6

XI?PRINT A+B
7

X12z2=1
ERROR; UNDEFINED SYMBOL

XI?PRINT Z+A
ERROR: UNDEFINED SYMBOL

XI?END

DONE

All BASIC statements except those mentioned above are legal in Execute Immediate. A GOSUB
statement in Execute Immediate will cause the referenced subroutine in the current program to be

executed and on encountering the RETURN statement, will revert to Execute Immediate.

Some examples of how Execute Immediate is commonly used are,

0910 DIM AS[254],Z2[12]
9020 INPUT AS[1l:10],2Z[2]
0030 PRINT Z[6]
#0406 PRINT AS$[12:15]
9050 END
RUN
?"HEADING LINE",783
UNDEFINED VALUE ACCESSED IN LINE 30
STOPPED AT 490
XI?PRINT Z(2)
783
XI?PRINT Z(6)
UNDEFINED VALUE ACCESSED IN LINE @
XI?Z(6)=445
XI1?2GOTO 30
445

DONE

4-7

48 REM STATEMENT

Comments (on program use and/or construction for example) may be included in the program by

means of REM statements.

SYNTAX
0013 REM THIS IS AN EXAMPLE OF A REM STATEMENT

FEATURES
1. REM statements may be included anywhere in a program.
2. Although REM statements are non-executable, it is legal to GOTO or GOSUB to them.

Execution control passes to the first executable statement following the REM.

3. REM statements can be used to segment visually, different sections of lengthy programs.
For example,

would be a very easy line in the program to find while scanning visually.

49 CHAIN STATEMENT

On occasion it is desirable to link several related programs together, or a single program may be too

large to fit in main memory all at once. (The maximum amount of main memory available to the
user is 10,112 words, and the amount of main memory used at any time may be determined by means
of the LENgth command.) The CHAIN statement links one program to another by causing the first

program to call for and execute its own replacement. The syntax is,

0013 CHAIN program,line
FEATURES

1. Program is the name of the replacement program. It may be a string constant, enclosed in quotes,
or a string variable, subscripted or not. $ symbols preceding program are treated as they are in the
GET command, and CHAINing to “$$$$” logs the user off the system. Shared programs may be
CHAINed to as follows:

0013 CHAIN #account,program,line
where #account,program is treated as the full name of the program.

2. Line is optional, and specifies the line in the replacement program where execution will begin. If
line is omitted then execution will begin at the first line in the replacement program. Line may be

a numeric constant, variable or expression.

)

4-8

When the system encounters a CHAIN statement, error messages are generated if the replacement
program is not in the designated library or if the program is too big to execute. Compile and

execution error messages are given as for the RUN command.

After a successful CHAIN, the previous program will have been overwritten by the replacement

program. (This is easily verified by LISting the current program both before and after execution.)

4.10 COM STATEMENT

When programs are CHAINed it is useful to be able to pass variables and files between the program
without having respectively to re-define and re-link them. The COM statement permits this to be

done conveniently. The syntax is,

0013 COM variable,variable(dimension),file,file(buffer)

FEATURES
1. Variable may be any string or numeric variable.

2. Dimension is used in COM statements as it is in DIM statements, except that all strings must

have explicit dimension, even if the dimension is 1 as in DIM A$ (1).
3. Buffer is used in COM statements as it is in DIM statements.

4. For a file or a variable to be common to both the originating and the replacement programs,

there must be a COM statement for it, both in the originating and in the replacement programs.

COM statements must be the first (lowest numbered) statements in both programs, and they must
be contiguous. COM statements which appear later in the program are treated by the system as DIM
statements. Variable names and file names which appear in COM statements must not appear else-

where in the same program in DIM statements.

The buffer sizes of files, and the dimensions and data types of variables must match in both programs,
but the actual names of the variables may differ. All items which appear in COM statements are
passed one by one through the common area up to the point where the dimensions, buffer sizes or

data types do not match.

Items may be passed through the common area only between contiguous programs. Two programs
(PROG1 and PROG2 for example), are contiguous if one CHAINs to the other. The variable names
in the three example programs illustrated below are identical from program to program. This is
primarily for ease in understanding the explanation which follows the examples. The variables

could just as well have had different names, so long as their data types and dimensions matched from

program to program.

4-9

PROG1 PROG2 PROG3

0001 COM A$(254),B(2,3),#1(5) 0010 COM A$(254),B(2,3),#1(5) 0001 COM A$(254),B(2,3),#1(5)
0002 COM C(17),D$(15) 0020 COM C(17),#2(3),D$(15) 0002 COM C(17),#2(3),E(4,4)
0003 COM D$(15)

0100 CHAIN “PROG2” 0750 CHAIN “PROG3” .
9999 END 0760 END 0100 END

PROG1 and PROG2 are contiguous, as are PROG2 and PROG3. PROG1 and PROGS3 are not contiguous.
The variables and files which are common to all three programs are, A$(254), B(2,3), #1(5) and C(17).
File #2(3) is common to PROG2 and PROG3, and D$(15) is not common between any two of the three

programs. (Its position in the COM lists is inconsistent.)

Variables and files in COM statements should be defined and linked, respectively in the program where

they are first declared to be in COMmon.

4.11 APPend COMMAND

During program development it is often convenient to write large or complex programs in sections,

save the sections separately, and then bring the sections together to form the whole.

Alternatively, the user may wish to include in his own program part or all of a program from another

library. The APPend command provides this ability.

The APPend command retrieves and appends the referenced program to the program currently in

the user’s work area. The syntax is,

A. APP-program

B. APP-# account, program
FEATURES
1. Program is the name of the program to be appended and account (Syntax b.) is the account

in whose library the (shared) program resides. If used, account must be preceded by a #
symbol and followed by a comma.
2. The first statement number of the referenced program must be higher than the last statement

number of the program in the user’s work area, otherwise the system will respond:
SEQUENCE NUMBER OVERLAP

and the command will be ignored.
3. The shared list (if any) of the referenced program is replaced by the shared list (if any) of

the program in the user’s work area.
4-10

)

4. The user is cautioned that if the referenced program is RUN ONLY, then the (now combined)
current and appended programs will be RUN ONLY and not available to LIST, PUNCH,
XPUNCH, DELETE, RENumber or any program editing command.

To append a program from the System public library, the syntax is,
APP-$3$$ program

To append a program from the Master library to which the current user has access the syntax is,
APP-$$ program

To append a program from the Group library to which the current user has access, the syntax is,
APP-$ program

Since APPend combine two programs into one program, there is no need to use the COM statement

for variables and files referenced in the programs.

4-11

Chapter 5

LIBRARIES

5.1 THE LIBRARY HIERARCHY

Account numbers in the BTI system are arranged in hierarchical structure. All account numbers in

the system have three digits with a non-numeric prefix.

In the following discussion, the numbers in parentheses refer to the similarly numbered areas on the

Library Hierarchy Chart. The chart illustrates the relationship between the various levels of the

hierarchy. In descending order the level names are,

System Manager (1)

System Library (2)
Master Account (3)
Master Library (4)

Group Librarian (5)
Group Library (6)

and User Account (7)
and User Library (8)

system | (V)
MANAGER
@002
SYSTEM
LIBRARY] (2)
@001
- — - —\V - — —— — —r— — — — —/
1 i ~l_
M vaster | [masTer | I master | MASTER
| ACCOUNT | ACCOUNT | | ACCOUNT | ACCOUNT | (3)
L, A002 L,. BO02 €002 D002
PRy / L N Ao \
/MASTER\ MASTER \ MASTER MASTER
LIBRARY \LIBRARY LIBRARY LIBRARY | (4)
A001 / B0O1 / c001 D001
N~ \ - ———
—l
™ Grour | | | GROUP
| LIBRARIAN | LIBRARIAN | (5)
L Dooo | | D900
L J_ - __
/ grour\ [usen user | USER
| ACCOUNT | | ACCOUNT | GROUP ACCOUNT
LIBRARY D001 D099 LIBRARY] (6) D901
D00 == Lr___...J D900
-
USER | USER USER
(LIBRARY LIBRARY LIBRARY) (g)
\D001 D099 / D901
—— ~

Library Hierarchy Chart

5-1

(7)

—
M wvasTer |
| ACCOUNT |

L 22
oy

MASTER\
LIBRARY

\ Z001 /

]

r Eslﬁ 1

| ACCOUNT |
D999
—_

/U:;\

LIBRARY
\ p9gs /

S

5.1.1 Special Purpose Accounts

Numbers prefixed by the @ (‘““AT’’) symbol have special purposes in the system. The @002 account
(1) for example, belongs to the System Manager, and in the @001 account (2) resides the system
public library. All users reference the files and programs in this library by using the file or program
name preceded by three $ symbols. For example, the command GET-$$$EXAMPLE would cause
the system to search the @001 library for a program named EXAMPLE. Regardless of which user
types the command (this includes the @002 and @001 accounts) the system will search the @001
library if the file or program name is preceded by three $ symbols.

Next below the @002 level in the hierarchy are the 002 Master Accounts (3). The apostrophe
denotes any letter of the alphabet, and there are 26 Master Accounts available in the system. For
any Master Account, the associated Master Library resides in the 001 account (4). For instance,
the library for the A0O02 Master Account resides in account A001 and is available to all users whose
account numbers are prefixed by the letter A. Master Libraries are referenced by using two $
symbols preceding the file or program name. If user A367 types GET-$$EXAMPLE the system
will search the A0O01 library for a program named EXAMPLE, but if user M403 types the same
command (GET-$$EXAMPLE), the system will search the M0O1 library for the program named
EXAMPLE.

5.1.2 User Accounts

User Accounts are next below Master Accounts in the hierarchy. The Group Librarians (5) are
special-purpose User Accounts whose responsibility is to maintain their respective Group Libraries
(6). Group Libraries are distinguished from other User Account Libraries by the fact that their
account numbers have zeros as their two right-most digits, such as C200 or N900. Programs and
files in Group Libraries are referenced by a single $ symbol preceding the name, and are available
to all User Accounts whose letter prefix and left-most digit match those of the Group Library
Account. For example, if account T289 types GET-$EXAMPLE the system will search the T200
Group Library for a program named EXAMPLE. If account B461 types the same command
(GET-$EXAMPLE) then the system will search the B400 Group Library for the program named
EXAMPLE.

Each User Account (7) has, in addition to its access to the Group, Master and System Libraries, a
library of files and programs which belong to that account. The files and programs in a User Library
(8) may have been created and modified by that user, or they may be copies of files or programs
which are stored elsewhere in the system. These files and programs may be shared with other users
at their owner’s discretion, or they may be kept proprietary. A user references the files and pro-

grams in his private library by name, and without $ symbols. For example, if user D624 types

5-2

GET-EXAMPLE then the system will search User Library D624 for a program named EXAMPLE.

Typical library accesses follow:

Command GET-$$$EXAMPLE
Account G204 F437 T782
Library Access @001 @001 @001
Command GET-$$EXAMPLE
Account G204 F4317 T782
Library Access G001 F001 TO001
Command GET-$EXAMPLE
Account G204 F437 T782
Library Access G200 F400 T700
Command GET-EXAMPLE
Account G204 G437 T782
Library Access G204 G437 T782

5.2 LIBRARY MANAGEMENT

The major elements of library management are:

1. adding files and programs to the library

2. erasing files and programs from the library

3. controlling access to files and programs in the library

The management of library files is discussed in detail in Chapter 6 of this Manual.

5.2.1 Adding Programs to the Library

A copy of the program in the user’s work area may be added to the user’s library by the SAVe com-

mand. The syntax is,

A. SAV-programname

B. SAV

FEATURES

1. Programs may only be saved in the user’s own library.

2. The SAVe command decompiles the program currently in the user’s work area, and any

common values are lost.

3. Programname in Syntax a. establishes the name of the program as it will appear in the user’s
library catalog.

4, If an attempt is made to save a program with the same name as a file or program already in
the library the error message will be printed:

DUPLICATE ENTRY
5-3

5. Programname may be omitted as in Syntax b if the program already has a name, e.g.,
a. if the program has already been named by the NAMe command, i.e.,

NAM-programname
b. if the program has been retrieved from a library (the user’s own or a public library)
and provided that a file or program of the same name does not already exist in the
user’s library.
b.2.2 Displaying the Contents of the User’s Library

The CATalog command gives a full listing and description of each item in the user’s library. The

syntax is,
A. CAT
B. CAT-m

C. CAT-m,n

FEATURES

1. Syntax a causes the entire contents of the user’s library to be displayed. For example,
CAT

S/N NAME CODE LEN SECT, SAVED ACCESS USE
22882 PK/MODE P 29320 2993 188/75 188/75 @PE@IP
20088 EXAMPLE P 20249 g9@3 182/75 182/75 QP@@P
22879 TESTFILE F geglp g@@g11 178/75 182/75 @@P12

TOTAL STORAGE = @@@17 SECTORS

2. Syntax b specifies the highest (most recent) serial number to be displayed.

3. Syntax c specifies the highest (most recent) and the lowest (oldest) serial number entries to
be displayed.

The CATalog command is fully described in Appendix A.

The user’s library catalog may also be output to the terminal or to a file by the System public
library utility program named CATALOG. See Appendix E for details.

5.2.3 Renaming Catalog Entries

The name of a file or program in the user’s library may be changed by the REDesignate command.

The syntax is,

RED-oldname,newname

FEATURES

1. The Use Counter for the entry will be reset to zero, and the Date Accessed will be set to the

date of the REDesignate command execution.

2.

The entry’s Serial Number and Date Saved will remain unchanged.

3. REDesignate has no effect on the copy of the program in the user’s work area.

The REDesignate command is particularly useful when storing successively modified versions of the

same program. For example,

(1)

CAT

S/N NAME CODE
gg122 TESTPROG P
g@121 TESTPROG4 P
gg12p TESTPROG3 P
g@120 TESTPROG2 P
ABORT

(2)

GET-TESTPROG

(3)

LIS

TESTPROG

2310 DIM AS(10)

pg@20 INPUT AS(1:5)
9939 A$(7:10) = "1976"
ggag PRINT Z$

2858 END

(4)

20 INPUT AS$(1l:6)

Ag PRINT AS

(5)
RED-TESTPROG, TESTPROGS

(6)

CAT

S/N NAME CODE
@@g122 TESTPROGS P
99121 TESTPROG4 P
gp@g2¢ TESTPROG3 P
ABORT

LEN

28036
#9936
28036

SECT.

29981
go31
2991

LEN SECT. SAVED

98936 g0l
29936 gog1
28936 ggP1

5-5

g461/76
852/76
#49/76

SAVED ACCESS USE

200089
pags6
28992

g61/76 #61/76
A50/76 P61/76
g49/76 B50/76

ACCESS USE
gopsag
pa3a6
29802

964/76
#61/76
g58/76

/@ (7)
A\ SAV-TESTPROG

(8)
CAT

S/N NAME CODE LEN, SECT. SAVED ACCESS USE

g@123 TESTPROG P gP336 PPPL @e6d4/76 P64/76 QPP
gg122 TESTPROG5 P 99036 PPP1l Pe6l/76 P64/76 PIPBY
@121 TESTPROG4 P gpe36 PPPlL P59/76 P6l/76 PPPL6

ABORT

Step 2 brings a copy of the most recent version of the program into the user’s work area

Step 3 displays the program code

Step 4 modifies lines 20 and 40 of the program

Step 5 changes the name of the most recent saved version of the program from TESTPROG to
TESTPROGSH

Step 7 saves the (now) most recent version of the program into the user’s library

5.2.4 Indexing Libraries

p
‘4 A short form of the contents of a library is displayed by the INDex command. The syntax is,
A. IND displays the user’s own library
B IND-$$$ displays the System public library
C. IND-$$ displays the associated Master library
D IND-$ displays the associated Group library
FEATURES
1. The names of programs and files in the referenced library are displayed alphabetically. File
names are preceded by a # symbol.
2. For example,
IND-S
IND-$$S
INDEX OF: €401
$2100MAC $#24K/AMPEX 300DEMO 380s #32K/DIABLO
32PORTLOG 6SQUARES 7208-PLOT1 7200-PLOT2 7200-PLOT3
A2160 A2100PUN ACCOUNT ACCTFIND ACCTLIST
@ ACCTTITLE ADD
ABORT
5-6

Files and programs may be veiled from display by the INDex command by the HIDe command. The w

syntax is,
A. HID-file
B. HID-program

The SEE command unveils hidden programs. The syntax is,

A. SEE-file
B. SEE-program

For example,
HEL-A123,

READY
IND

INDEX OF: Al23

BOOKS DISCOUNT EVERYONE EXAMP #FILE2 HELLO
PER@PZ2 PERMASTER ROUNDOFF $TESTFILE TESTPROG WX23
DONE
HID-TESTFILE
HID-EVERYONE
IND ¢N
INDEX OF: Al23
BOOKS DISCOUNT EXAMP #FILE2 HELLO PERGP@Z2
PERMASTER ROUNDOFF TESTPROG WX23
SEE-TESTFILE
IND
INDEX OF: Al23
BOOKS DISCOUNT EXAMP #FILE2 HELLO PERG@P2
PERMASTER ROUNDOFF #TESTFILE TESTPROG WX23

5.2.5 Deleting Programs from the User’s Library
Programs are deleted from the user’s library by the KIL1 command. The syntax is,
KIL-program

The KIL]l command has no effect on the program currently in the user’s work area.

5-7

5.2.6 Other Library Management Activities

Programs and files in the user’s account library may be screened by a master account and/or by the

System Manager from erasure and modification. (See Appendix A, the CATalog command.) The user may

render programs in his own library unabortable by using the non-abort command. The syntax is:
NON-program

To neutralize NON-programs the non-abort status of a program the ABORT command is used. The

syntax is:

ABO-program

The user is cautioned that if an unabortable program is screened by a higher-level account, only that

account or a higher one can then neutralize the unabortable status of the program.

5.3 SHARED PROGRAMS

Programs, like files may be shared with as many as 118 different account numbers other than the

account in whose library the programs reside. The SHAre command is used, and the syntax is,

SHA-program,account

FEATURES

1. Program is the name of the program to be shared and account is the name of the account
with which program is to be shared.
2. Programs may be shared with public libraries and thus with all accounts which have access

to those libraries. When a program is shared
SHA-program,@001

the System public library, it is available to all system accounts. When it is shared

SHA-program,‘001

<

with a Master library, where ¢ stands for a specific letter of the alphabet, the program is

available to accounts in that letter group. When a program is shared
SHA-program, ‘x00
with a Group library, where ° stands for a specific letter of the alphabet, and x for a specific

digit between 0 and 9, the program is available to all accounts whose letter and left-most

digit match those of the designated Group library account.

3. To GET a shared program from a ‘‘foreign’’ library, the syntax is,
GET-#account,program
4, To CHAIN to a shared program in a foreign library, the syntax is,

0013 CHAIN ““#account,program’
5-8

5. To APPend a shared program from a foreign library to the program currently in the work
area, the syntax is,
APP-#account,program

Each shared program carries with it a list of accounts with which it is shared. This list may be dis-

played by the System public library utility program named SHAREDLIST.

A shared program retains its original shared list under the following conditions:

A. when SAVed into a different account library
— with its original name
— when re-NAMed and then SAVed
— when SAVed and then REDesignated

B. when re-NAMed and then saved into its originating library

C. when REDesignated in its originating library

D. when CHAINed to or from by its owning account or by an account with which it is shared
E. when RENumbered by its owning account or by an account with which it is shared

A shared program loses its shared list completely when APPended to another program, either in its
originating account library, or in the library of an account with which it is shared. When APPended,
a shared program’s shared list is replace by the shared list (if any) of the program to which it is
APPended.

The shared list of a program may be revoked in whole or in part by any account into whose library

the program is saved, by the UNShare command. The syntax is,
A. UNS-program

revokes the entire shared list, and

B. UNS-program, account

revokes share privileges to the named account for the named program.

5-9

Chapter 6
FILES

A file is a collection of data, structured to conform to a user’s specific needs. While they exist
independently of BASIC programs, the data in the file are generally stored and retrieved by means
of BASIC programs. Since files exist independently of user programs, the data in a file may be
accessed and modified by more than one user at a time, under BASIC program control. The
BASIC-X file subsystem provides special non-interfering file sharing features. These are

described in Section 6.4.

6.1 STRUCTURE OF BASIC-X FILES

A file may contain string or numeric data or a combination of the two types. Each file is divided into
a series of records, and a single file may have from 1 to 9502 records. Up to 63 separate files may be
linked (i.e., referenced in a single program) by a given program at one time, and linked files may be
freely passed in common between chaining programs. The number of file records required in a specific
file depends (a) on how much storage space is required by the actual data in the file, and (b) how the

file data are structured.

Each file record can hold as many as 128 words or 2048 bits of data. (One word is 16 bits.) Numbers
are stored in floating point or ““E” notation and each number requires 2 words or 32 bits of storage.

Thus, one file record can store as many as 64 numbers.

Character strings require a half-word of storage per character, plus overhead. The formula for calculating

string storage is 1 + INT[(N+1)/2] where N is the number of characters in the string. Stated in words,
the formula says that each string requires one word for a string identifier, plus one word for every two
characters in the string, plus a full word for an unpaired character, should one exist. Thus, a single file

record can accommodate a string of up to 254 characters. This is proveable as follows:
1+ INT[(254+1)/2] = 128

We can solve for the number of words required to store a 10-character string in the same way:
1+ INT[(10+1)/2] = 6

Since a single file record can store 128 words of data, we could store up to INT(128/6) = 21 strings of
10 characters each, in one record. (As is demonstrated by this example, the overhead for each string is
constant, plus or minus one word, so the larger the string, the less overhead is required to store it,

relative to the length of the string itself.)

A file then, can store up to 600,000 floating point numbers or approximately 2.4 million
characters, or a combination thereof.

6-1

Data are packed toward the beginning of each file record, and each item of data must be wholly

contained within a record. That is, a string of 20 characters cannot be stored with 10 characters in ‘
record N and the remaining characters in record N+1. If an attempt is made to store data in such a way

as to ignore this restriction, the user will either encounter an error, or the entire string will be stored in

record N+1, depending on how the file is being used, i.e., as a random or serial access device. In either

case, both time and file storage can be wasted if the user does not consider the construction of the data

as it relates to the capacity of individual file records. Since a file record can hold a string of up to 254
characters in length, data can usually be constructed in such a way as to waste the minimum amount of

space in each record.

The remainder of this chapter is devoted to the three major aspects of file use. They are,
creating/erasing/linking files
accessing files

sharing files

6.2 CREATING/ERASING/LINKING FILES
6.2.1 Creating and Erasing Files

Files are created either by the OPEn command or by File Mode 7. Files are erased either by the CLOse
command or by File Mode 8. (File Modes are discussed later in this chapter.) The syntax for the OPEn (

command is,

OPEn-filename,size

FEATURES

1. Filename is the name of the file to be created. It may be any combination of up to 10 characters

except that the following are disallowed:

commas

quotation marks

non-printing characters (control characters)
embedded blank spaces

lower case letters

leading # and $ symbols

2. Size is the number of records the file will contain. It is an integer in the range 1 to 9502 with

the following restrictions:

there must be sufficient space on the storage medium to accommodate a file of the

specified size
the user’s storage limit must not be exceeded by creating a file of the specified size

6-2

®

For example, the command
OPE-FILEA,150

creates a file named FILEA which is 150 records long.

The syntax for the CLOse command is,

CLOse-filename

FEATURES

A T o

Filename is the name of the file to be closed.

Each record in filename is overwritten with End-Of-File marks.

The file is removed from the user’s library.

The system types CLOSED.

Large files may require up to 5 minutes to be erased.

A file may be erased only if it is not linked, and not made permanent by a Master Account or

the System Manager.

6.2.2 Linking Files

The FILE statement is used to create, erase and link files and the syntax is,

0013 FILE #number,mode;name

FEATURES

The # symbol must always precede number.

Number is an integer constant, variable or expression.

Name is the name of the file and is a string constant enclosed in quotes, or a string variable which
may or may not be subscripted.

Mode is an integer constant, variable or expression which specifies the action to be taken, i.e., to

create, erase or link the file.

The syntax for the FILE statement to create files is,

0013 FILE #size, 7; filename

FEATURES

1. Size is a positive integer constant, variable or expression which evaluates to <9503. It specifies
the number of records the file is to contain.

2. The integer 7 designates the file create mode and is the only mode which creates a file. There-
fore, if a variable or expression is used, it must evaluate to the quantity 7.

3. Filename is the name of the file to be created.

6-3

The syntax for the FILE statement to erase files is,

0013 FILE #number,8;filename

FEATURES

1.

Number is a positive integer constant, variable or expression which evaluates to less than 32767.
Its purpose is to maintain a consistent syntax for FILE statements. Even though number has

no direct use in erasing the named file, it is evaluated by the system. This means that if a variable
is used to specify numaber, the variable must have been previously defined in the program.

The integer 8 designates the file erase mode and is the only mode which erases a file. Therefore,
if a variable or expression is used, it must evaluate to the quantity 8.

Filename is the name of the file to be erased.

A file may be erased only if it is not currently linked. To unlink a file, a statement of the follow-

ing form may be executed:
0013 FILE #number, 3;”

where number is the number of the currently linked file which is to be unlinked. The general use
of Mode 3 is discussed in Section 6.5.5. The filename in this case may be any name other than
that of a file currently extant in the user’s library. The null (*’) form is suggested merely as a

convenience. For example, to unlink file number 10,

0013 FILE #10,3;” ”

In order to be available for data storage and retrieval, an existing file must be linked. The syntax for the
FILE statement to link files is,

0013 FILE #filenumber,mode;filename

FEATURES

The FILE statement, using mode 1 through mode 6 links the named file to the current program.
Filenumber is an integer constant, variable or expression which evaluates to a number in the
range 1 to 63.

Mode is an integer constant, variable or expression in the range 1 through 6. The mode is
optional for linking files and if not included, the system sets the mode to 1 (READ ONLY).

File modes are discussed in detail in Section 6.5.5. The syntax without mode is,
0013 FILE #filenumber;filename

Filename is the name of a previously created file to be accessed. It may be a string constant

enclosed in quotes, or a string variable, subscripted or not.

6-4

One or more FILE statements must be executed for each file to be accessed in the program. To access

a file residing in a library other than the user’s own, the FILE statement syntax is,
0013 FILE #filenumber,mode;#account,filename

The file must previously have been shared with the current user. The # symbol must precede the
account, and account is the name of the account which owns the named file, that is the account in
whose library the file resides. For purposes of linking files, the entire expression, # account,filename
is considered to be the name of the file, and may be specified either as a string constant enclosed in

quotes, or as a string variable, subscripted or not. For example,
0013 FILE #1,1;*“#M050,TESTFILE”

Files which belong to Group, Master or System accounts are shared on a READ ONLY basis by virtue
of belonging to the public account. They may be linked as follows:

Group library files 0013 FILE #filenumber,mode;$filename
Master library files 0013 FILE #filenumber,mode;$$filename
System library files 0013 FILE #filenumber,mode;$$$filename

6.3 ACCESSING FILES

There are two classic types of file data storage; random and serial. In a random access file, the data to
be stored are organized into sets and each set is stored in a separate file record or contiguous group of
records. Retrieval of data stored in this manner is straightforward, since each data set is directly

related to a specific file record number.

In a serial access file, each data set is stored on the heels of its predecessor without regard to file record
numbers. Data retrieval is done by stepping through data sets until the desired set is found. This
method is typically used to store very small and very large data sets since there is less chance of wasted
space at the ends of records (see Section 6.1). Even in a serially accessed file, each item of data must

be wholly contained within a given record, however.

In most applications, some combination of random and serial access is used.

6.3.1 Reading Data From Files
The syntax for random file READ statements is,

A. 0013 READ #filenumber,recordnumber;variable,variable,. . .variable
and the syntax for serial file READ statements is,

B. 0013 READ #filenumber,variable,variable,. . .variable

6-5

FEATURES

The # symbol must always precede filenumber.
2. Filenumber is an integer constant, variable or expression which evaluates to the number with

which the file is linked, and must always be specified. For example,

0001 FILE #1,1;“FILEA”
0002 FILE #2,1;“FILEB”
0003 FILE #3,1;“FILEC”

now there are three files linked. File number 1 is named FILEA, file number 2 is named FILEB,
and file numher 3 is FILEC. All three files must be in the current user’s library, that is they must
all have been previously created by one of the methods described in Section 6.2.2. To read a

6-character string to be named A$ from the 10th record of FILEC,

0004 DIM A$(6)
0005 READ #3,10;A%

3. In a random file read (Syntax A), a recordnumber is specified. It is specifying a record number

that makes the statement a random file read. (If recordnumaber is omitted as in Syntax B, the
statement is a serial file read.) Recordnumber is an integer constant, variable or expression which
evaluates to the number of the file record from which the variables are to be read. Recordnumber

may not be larger than the size of the file.
4. Variable will be the name of the string or number to be read from the file. It must match the

data in the file in type and dimension (see Section 6.3.2). In a random file read (Syntax A) all

of the variable(s) to be read must be contained in the specified record. In a serial file read, the

variables must be contiguous in the file, but may be stored in more than one (contiguous) record.
5. The file READ statement reads strings of any length up to 254 characters and/or numbers, one

at a time. For example,

0013 DIM Z$(20)
0014 READ #1,10;Z$,B,C

reads from record 10 of file 1, a string no longer than 20 characters to be named Z$, and two

numbers to be named B and C, respectively.

The MAT READ statement is used to read numeric arrays. For random file reads, the syntax is,
0013 MAT READ #filenumber,recordnumber;array,array,. . .array

and for serial file reads, the syntax is,

0013 MAT READ f#filenumber;array,array,. . .array

6-6

~.

)

FEATURES

6.3.2

The dimension(s) of array may be specified either in a DIM statement or in the MAT READ

statement. For example, either

(1) 0001 DIM W(23),X(16),Y(1),Z(3,3)
0002 MAT READ #4,4;,W,X,Y,Z
or
(2) 0003 MAT READ #2;N(4,2),R(10),T(6)
is correct. (The dimensioning of arrays for files follows the same rules that apply to all
other array use. Specifically, if the array is to be larger than 10 or 10,10 then it must

previously have been dimensioned in a COM or DIM statement. See Section 2.2.)

In a random file MAT READ such as example (1) above, the total quantity of numbers
contained in the specified record must be greater than or equal to the quantity of numbers
to be read by the MAT READ statement. In example (1) above, the quantity of numbers
to be read is 49.

W(23) = read 23 numbers
X(16) = read 16 numbers
Y(1) = read 1 number
Z(3,3) = read 9 numbers

read 49 numbers

If record 4 of file 4 contains fewer than 49 numbers, then an End-Of-Record error will be
generated. An End-Of-Record error will also be generated by any random file READ state-
ment which attempts to read more than 64 numbers, since there can be no more than 64
numbers in any one file record. A MAT READ or MAT PRINT of >64 numbers is done by

using serial access to the file, that is by omitting the file record number.

Writing Data To Files

The syntax for random file PRINT statements is,

A. 0013 PRINT #filenumber,recordnumber;item,item,. . .item

and the syntax for serial file PRINT statements is,

B. 0013 PRINT #filenumber;item,item,. . .item
FEATURES
1. The # symbol must precede filenumber.
2, Filenumber is an integer constant, variable or expression which evaluates to the number with

which the file was linked in a previous FILE statement.

6-7

3. In a random file print, (Syntax A) the recordnumber must be specified. It is an integer constant,
variable or expression which evaluates to the number of the file record into which the item(s)
are to be written.

4, Item is the string constant or variable, or the numeric constant, variable or expression whose
value is to be written to the file. In a random file print (Syntax A) there must be sufficient
space remaining in the specified record to hold the item(s), and in no case can the total storage
requirement of the data to be printed equal more than 128 words, whereas in a serial file print
(Syntax B) these restrictions do not apply.

5. The file PRINT statement prints strings of any length up to 254 characters, and/or numbers,

one at a time. For example,

0013 DIM C$(17)
0014 PRINT #1,6;C$,D,E

prints in record 6 of file 1 a 17-character string, C$ and two numbers, D and E respectively.
Note that it is the logical length of C$ that will be written to the file and not the dimensioned
length. If C$ = “13 CHARACTERS” then 13 characters will be written to the file, and a string
variable of dimension 13 can read the string data. In this connection, it is worth noting further
that the names of variables specified as items in a file print statement bear no relation to the

names of variables which might later be used to read the items.

The MAT PRINT statement is used to write numeric arrays to a file. For random file MAT PRINTS

the syntax is,
A. 0013 MAT PRINT #filenumber,recordnumber;array,array,. . .array

and for serial file MAT PRINTS the syntax is,

B. 0013 MAT PRINT #filenumber;array,array,. . .array
FEATURES
1. The dimensions of arrays to be printed cannot be specified in the file MAT PRINT statement,

but must be defined previously in the program.

2. In a random file MAT PRINT, the total quantity of numbers to be printed must not be greater

than 64. For example,

0011 DIM A(8,9)

0012 FOR I=1 TO 72
0013 A(I)=I

0014 NEXTI

0015 MAT PRINT #1,7;A
0016 END

6-8

will generate an End-Of-Record error in line 15 of the program, whereas the serial access

version,

0015 MAT PRINT #1;A

will not.

When printing strings to a file, keep in mind that a subset of the string cannot be read from the file.
For example, if a 15-character string is printed to a file, that string can only be read by a string variable

whose dimension is greater than or equal to 15. The sequence

(1) 0001 DIM X$(15),B$(2)
0002 X$=“ABCDEFGHIJKLMNO”
0003 FILE #1,2;“TEST”
0004 PRINT #1,1;X$
0005 READ #1,1;B$
0006 PRINT B$
0007 END

will produce a STRING OVERFLOW error in line 5. The inverse approach will work, however.

(2) 0001 DIM X$(15),B$(2)
0002 B$=“YZ”
0003 FILE #1,2;“TEST”
0004 PRINT #1,1;B$
0005 READ #1,1;X$
0006 PRINT LEN(X$)
0007 PRINT X$
0008 END
RUN

2

YZ

DONE

Further note that if another string immediately follows the string to be read as X$ in example (2) above,
that string will not be read as a part of X$, even if it would fit into the 15-character variable along with

the 2-character string stored under the name B$.

Numbers printed to a file in array form may be read in subsets, including as single numbers. For example,

0001 DIM Z(3,4),A(5),B(2,2)

0002 MAT READ Z

0003 DATA 1,2,3,4,5,6,7,8,9,10,11,12
0004 FILE #1,2;“TEST”

0005 MAT PRINT #1,1;Z

0006 MAT READ #1,1;A,B

0007 READ #1;D,E,F

0008 END

The value of the variables A, B, D, E and F after execution of line 7 are,

>
n
U W N
los]
It
o
il
ot
o
=1
1l
—
=
ry
]
[ay
[\V)

6.3.3 File Data Location

The physical End-Of-File is that record in a file beyond which data may not be stored. It is established

by the user for each file in the user’s private library when each file is created.

FEATURES

1.

If K was the number in the size parameter when the file was created then the physical End-Of-
File follows the Kth record.

The physical End-Of-File cannot be modified in any way by the user, once it is set.

An End-Of-File mark is a simulated physical End-Of-File which may be written to the file by
the user.

End-Of-File marks are treated the same as the physical End-Of-File during file read operations,
but may be overwritten in write operations.

An End-Of-Record mark is a simulated record boundary which follows the last data item in a
record, and which may be written to the file by the user.

End-Of-Record marks are treated the same as record boundaries during file read operations, but
may be overwritten in write operations.

There may be either an End-Of-File mark or an End-Of-Record mark in each record of a file,
but not both.

A flag may be set in programs to detect and avoid impending errors that would be generated by trying

to read or write beyond the end of the file. The syntax is,

0013 ON END #filenumber THEN linenumber

FEATURES

1. Filenumber is an integer constant, variable or expression which evaluates to the number of the
referenced file. It must always be preceded by the # symbol.

2. Linenumber is the number of the line in the current program to which execution control will
pass in the event that the End-Of-File is encountered by an attempted file operation in the
current program.

3. The ON END flag for any file may be revoked as follows:

0013 ON END #filenumber THEN 0

6-10

This will allow End-Of-File conditions to generate errors as though a flag had

never been set for that file.

4, The ON END flag is revoked by chaining to a new program.

ON END statements must be preceded in the program by FILE statements so that the End-Of-File state-
ment will reference an existing, linked file. Once the ON END flag is set for a given file it remains in
effect until either it is explicitly changed in the current program, or the current program ends. The user
is cautioned that since the ON END statement references a file number and not a file name, care should
be taken to re-define the ON END flag if a new file is linked with a previously used file number for
which an ON END flag was already set.

The ON END flag is set when the ON END statement is executed. Therefore, if a file READ or PRINT
statement is executed for a given file earlier in the program than an ON END statement for that file is
executed, any End-Of-File errors generated would not be handled by the ON END flag.

The ON END flag is triggered by End-Of-File marks in the same way as it is by the physical End-Of-File.
During file write operations, End-Of-File marks are handled as data, in that they may be written to the

file, overwritten by other data, or may overwrite other data.

It is frequently necessary to know the type of the next data in the file before attempting to read from
or write to a file. The TYP function allows the next data type in the file to be determined without the

risk of generating a terminal error. The syntax is,

A. 0013 A=TYP (filenumber)

B. 0013 A=TYP (-filenumber)

C. 0013 IF TYP(filenumber)=N THEN linenumber

D. 0013 GOTO TYP (filenumber)OF linenumber,linenumber,. . .linenumber

FEATURES

1. The minus sign preceding the file number is optional. If used, as in Syntax B then five values

are possible in the result:
0 = the referenced file is non-existent — (if the file is “‘linked”” using Mode 4, O can
mean either that the file is busy or non-existent)
= the next data item is numeric
= the next data item is string

= the next item is an End-Of-File

- W N =
|

= the next item is an End-Of-Record
The minus sign may also be used in Syntaxes A, C and D.

If a minus sign is omitted then one of only the first four values (0 through 3) is possible in the

result, and End-Of-Record marks and record boundaries are ignored.
6-11

3. A newly linked file shows TYP(-N)=4 even if there is an End-Of-File mark or other data in
the record.

During program execution, each file that is to be accessed by the program has a pointer as soon as the

file is linked. In addition, each user who is accessing a file has a separate pointer to the file. Immedi-

ately following execution of a file statement, the pointer is set to the beginning of the file.

Both the file READ and file PRINT statements may be used in ‘““itemless’ form, that is where they
have no variable or item parameter, respectively. The formats for these itemless statements and their

uses are:

A. 0013 READ #F,R
positions the file pointer at the Rth record of file number F.

B. 0013 PRINT #F,R
positions the file pointer at the Rth record of file number F and writes an End-Of-
Record mark in that record. The End-Of-Record mark replaces any and all data stored

in the referenced record.

C. 0013 PRINT #F,R;END
writes an End-Of-File mark in the Rth record of file number F and positions the file

pointer after the End-Of-File mark.

D. 0013 PRINT #F
writes the current buffer for file number F back to the disk. (See Section 6.4.2.)

Below is a graphic representation of the file pointer location following execution of typical file operations.

file name: FILE Record #1 = ““A 21 character string” — 12 words of storage
file length: 5 records Record #2 = 4002 4713 84 17 467 853 — 12 words of storage
Records #3, 4 and 5, unspecified — 0 words of storage

EOR = End-Of-Record EOF = End-Of-File * = physical End-Of-File : = record boundary

ARROW INDICATES POINTER POSITION IN FILE AFTER STATEMENT EXECUTION

STATEMENT

RUN : #1 : #2 HEE - B - | . #5

0010 FILE #1,2;“171LE”l :A 21 character string EOR:4002 4713 84 17 467 853 EOR: : : :EOF*
0020 READ #1,1 :{A 21 character string EOR:4002 4713 84 17 467 853 EOR: : : :EOF*
0030 DIM A$(21)

0040 READ #1;A$:A 21 character string‘ EOR:4002 4713 84 17 467 853 EOR: : : :EOF*
0050 READ #1:B :A 21 character string EOR:4OO2L4713 84 17 467 853 EOR: : : :EQF*
0060 DIM C(3) '

0070 MAT READ #1:C ;A 21 character string EOR:4002 4713 84 17 467 853 EOR: : : :EOF*
0080 D=906

0090 PRINT #1;D :A 21 character string EOR:4002 4713 84 17 906‘ EOR: : : :EOF*
0100 READ #1,2 :A 21 character string EOR:l4002 4713 84 17 906 EOR: : : :EOF*
0110 PRINT #1,3;END A 21 character string EOR:4002 4713 84 17 906 EOR: EOFL: : :EOF*
0120 PRINT #1,4 :A 21 character string EOR:4002 4713 84 17 906 EOR: EOF: EOR}: :EQF*
0130 FILE#I,I;“FILE”‘:A 21 character string EOR:4002 4713 84 17 906 EOR: EOF: EOR: :EOF*

6-12

6.4 COMMON FILES AND FILE BUFFERS
6.4.1 Common Files

Linked files may be declared to be in common between chaining programs. The COM statement is used
for this purpose, and optionally to specify the size of a given file’s buffer. To declare a file to be in

common the syntax is,

A. 0013 COM #filenumber
and to specify the common file’s buffer size the syntax is,
B. 0013 COM #filenumber (buffer)

FEATURES

1. Filenumber is an integer constant which is equal to the number with which the file is to be

linked. Filenumber must be preceded by a # symbol.
2. Buffer (Syntax B) is an integer constant in the range 1 through 32 which specifies the size of

the buffer for filenumber in terms of number of records. For example, the statement
0013 COM A(6,3),2$(254),#1(10),#2(4),#3
declares the following to be in common:

the numeric array variable A whose dimensions are 6 rows by 3 columns
the string variable Z$ which may be up to 254 characters long
the file number 1 with a buffer equal to 10 file records in length
the file number 2 with a buffer equal to 4 file records in length
the file number 3 with a buffer equal to 1 file record in length (the buffer for a
given file is 1 record long if its size is not explicitly declared to be otherwise)
3. Like all COM statements, those specifying files must be the first statement(s) in both the current
program and in the chained program.
4, Like variables in COM statements, files passed in common must be in corresponding positions
in the COM statement and must have the same buffer sizes if buffer sizes are specified. (See
Section 4.10.)

6.4.2 File Buffers

A file buffer is a space in the user’s work area which is reserved to hold a copy of data being read from
or written to the file. Each linked file has a separate buffer which is reserved when the file is initially
linked. The actual file and its data remain stored on the disk. The purpose of file buffers is to minimize
the number of disk accesses during program execution. This is because disk access is more time con-

suming than main memory access.

6-13

File buffer sizes may be declared in DIM statements as follows:

0013 DIM #filenumber (buffer)

FEATURES
1. Filenumber is an integer constant equal to the number with which the file is linked.
2. Buffer is a positive integer constant <33, which specifies the size of filenumber’s buffer in terms

of number of records.

3. A file may not have its buffer size set (or implied) twice in the same program. This means that
if the file is to be passed through the common area to a chaining program, its buffer size may
not be declared in a DIM statement, either in the current program or in the chained program.
This is true even if no buffer size is specified for the file in the COM statement.

4. An example of the DIM statement used to set file buffer sizes,
0013 DIM A$(254),#1(25),D(2,3)
declares the dimensions of the following:

the string A$ to have up to 254 characters
the file number 1 to have a buffer equal to 25 file records in length

the array variable D to have 2 rows and 3 columns

When an operation on a file (a file READ or a file PRINT) “pushes’ the pointer beyond the end of the
buffer, the contents of the buffer are written back to the disk, and the record(s) containing the data
referenced by the file operation are read into the buffer. In most applications, data sets are stored and
retrieved in contiguous fashion. Therefore, the larger the file buffer, the fewer disk accesses are neces-
sary, since a larger piece of the file can fit into the buffer at one time. The user is advised to exercise
caution when specifying large file buffers. The available work area is 10,112 words, and each 1-record
increment in buffer size uses an additional 128 words of main memory. Thus in general it is prudent

to keep file buffers in the range 1 to 5.

When several users are sharing a file simultaneously, there exists the possibility that the buffer belonging
to the user with READ/WRITE access will not have been written back to the disk in time for a READ
ONLY access to make use of data written by the READ/WRITE user. (See Section 6.5.5, File Access
Modes.) The probability increases in direct proportion to the size of the users’ buffers. In order to
strike the optimum balance between buffer sizes and buffer ‘““dump frequencies’’, the following is pro-

vided as a means of writing (dumping) the buffer back to the disk under program control:
0013 PRINT #filenumber

The buffer is written back to disk automatically when a file is re-linked. This is of particular interest in
simultaneous file sharing applications where the File Mode alternates frequently between Mode 5
(READ ONLY) and Mode 6 (READ/WRITE).

6-14

6.5 SHARED FILES
6.5.1 SHAre Command

Data stored in files may be shared among many users. In order for a file to be available to accounts
other than the account in whose library the file resides, the file must be shared with the other access-

ing accounts. The SHAre command is used for this purpose and the syntax is:

SHA-filename,account,R

FEATURES

1. Filename is the name of the file to be shared.

2. Account is the name of the account with which filename is to be shared.

3. R is optional. If included, the file is shared on a READ ONLY basis with the named account.
If R is omitted then the shared file access is READ/WRITE.

4, User files may be shared in the same way with all levels of public libraries. When a file is shared

SHA-filename, @001

with the System public library, it is available to all system accounts. When it is shared
SHA-filename, ‘001

with a Master public library, where ¢ stands for a specific letter of the alphabet, the file is avail-

able to all accounts within the designated letter group. When a file is shared
SHA-filename,‘x00

with a Group public library, where ‘ stands for a specific letter of the alphabet and x for a

specific digit between 0 and 9, the file is available to all accounts whose letter and left-most

digit match those of the designated Group public library.
A file may be shared simultaneously with a public library and with individual accounts. For
example,

SHA-FILEA,@001
SHA-FILEA,B206
SHA-FILEA,N483

In this case, even if the @001’s share privileges are revoked, the share privileges of accounts B206
and N483 remain. See the UNShare command for further information on revoking file sharing

privileges.

6.5.2 Listing File Access

The System public library maintains a utility program named SHAREDLIST. The program lists, for
the designated file, all accounts with which the file is shared. The file must either be owned by or

6-15

shared with the inquiring account. For example,

HEL-A191
READY

SHA-FILE1,A202
SHA-FILE1,A567,R
SHA-FILE2,A202,R
HEL-A202,

READY

SHA-FILE3,A444
SHA-FILE3,A555

The SHAREDLIST utility flags files shared READ ONLY with an asterisk.

GET-$$$SHAREDLIST
RUN

SHAREDLIST

NAME: #A1901,FILE1
A202 *AbH67
NAME: #A101,FILE2
*A202

NAME: FILE3

A444 Ab55
NAME: FILE4

NO SUCH ENTRY
NAME:

DONE

Accounts with which a given file has been shared have the same priviliges as the owning account (unless
access has been limited to READ ONLY by the R parameter in the SHAre command) with two exceptions:
one, the non-owning account(s) cannot control share privileges to another account, and two, the non-
owning account(s) cannot close the file. The account which owns the file retains sharing privileges,

READ/WRITE privileges and closing privileges, unless the file has been protected by its Master account
or the System Manager.

6.5.3 Copying Files

Data may be copied from one file to another by the COPy command. The syntax is:

COP-#source account,source filename,#destination account,destination filename,
first source record,last source record,first destination record

6-16

FEATURES

1. Only the underlined parameters are mandatory. For example, if account A123 executes
COP-TESTFILEMYFILE

the whole of TESTFILE will be copied to MYFILE, both files in the library of account A123.

2. If the source account and/or destination account are specified, each must be preceded by a #
symbol. A user may copy a file from a source account different from his own if the source
file has been shared with the copying user. The user may copy to a destination file in an account
different from his own if the destination file has been shared on a READ/WRITE basis with the
copying user.

3. The first source record, last source record and first destination record parameters permit less
than whole files to be copied. The user may specify a range of source file records to be copied,
or may even copy a single record from the source file. For example,

(1) COP-FILEA,FILEB,2,7,1

(2) COP-FILEA,FILEB,3,3,10
In example (1), records 2 through 7 of FILEA will be copied to FILEB, beginning in record 1
of FILEB. In example (2), record 3 of FILEA will be copied to record 10 of FILEB.

4, If the first source record parameter is specified, then both the last source record and the first
destination record parameters must be specified.

5. The COPy command causes any data previously stored in the destination file to be overwritten
with the specified data from the source file, and leaves the source file unaffected.

6. The destination file must be large enough to accommodate the specified portion of the source file.

6.5.4 UNShare Command

The UNShare command revokes share privileges to the named file for the named account. The syntax is:

UNS-filename,account

FEATURES
1. Filename is the file which the named account may no longer share.
2. To revoke all share privileges to a given file:

UNS-filename

6.5.5 File Modes

During interactive and simultaneous file sharing, there could exist the possibility that a given file record
would be updated simultaneously by two or more users, leading to inaccurate or garbled file data.

BASIC-X, to preclude this possibility, implements file sharing on a non-interfering basis. This is, if one

6-17

user is writing to a file, BASIC-X locks out all other attempts to establish a WRITE link to the file.

Other users have the option of having their requests for WRITE access queued or ignored.
File modes 1 through 6 are used to link files. The eight file modes and their uses are:

MODE PURPOSE

1 READ ONLY link

READ/WRITE link

READ ONLY link (file de-linked if non-existent)

READ/WRITE link (file de-linked if non-existent or if a READ/WRITE link exists)
READ ONLY link (only for files already linked in another mode)

READ/WRITE link (only for files already linked in another mode — request is
queued if a READ/WRITE link exists)

(=209 SR - VU \V]

-3

CREATE FILE
DELETE FILE

There are numerous circumstances which might prevail at the time a FILE statement is executed. For
example, the file may reside in a Public library and be shared with all users READ ONLY. Or the file
might be shared READ/WRITE with all users, opening the possibility of its being unavailable to any

one user from time to time.

The following chart is provided to help the user understand and anticipate the behavior of the file
modes under typical use conditions. It is by no means a complete list of every circumstance under
which the user might execute a FILE statement, but is intended to assist in making full and efficient
use of BASIC-X files.

In each case the referenced file is presumed to reside in the current user’s library, to be shared with at
least one other user on a READ/WRITE basis, and to have no Master account or System Manager
protection. (See Appendix A, the CATalog command for a discussion of higher level account protec-

tion of files and programs.)

In the chart, an entry in caps represents an error message. The phrase ‘‘file de-linked’’ means that any
file which was previously linked in the program with the same file number is now not linked, and that

no new link to that file number has been established.

In every case where the file is successfully linked, the file pointer is set to the beginning of the file, and
the file buffer (if any) is written back to disk.

6-18

Mode 1
(READ ONLY)

Mode 2
(READ/WRITE

Mode 3
(READ ONLY)

Mode 4
(READ/WRITE)

Mode 5
(READ ONLY)

Mode 6
(READ/WRITE)

Mode 7
(FILE CREATE)

Mode 8
(FILE DELETE)

File not linked

by any user

file linked

file linked

file linked

file linked

NON-EXISTENT
FILE REFERENCED

NON-EXISTENT
FILE REFERENCED

DUPLICATE ENTRY

file deleted

File linked by

current user

file re-linked

file re-linked

file re-linked

file re-linked

file re-linked

file re-linked

DUPLICATE ENTRY

BUSY/PROTECTED
FILE

File linked by
current user

and in a READ/
WRITE mode by
another user

file re-linked
BUSY/PROTECTED
FILE

file re-linked

file de-linked

file re-linked

program suspended
until file available

DUPLICATE ENTRY

BUSY/PROTECTED
FILE

File nonexistent

NO SUCH FILE

NO SUCH FILE

file de-linked

file de-linked

NON-EXISTENT
FILE
REFERENCED

NON-EXISTENT
FILE
REFERENCED

file created

NO SUCH FILE

As is demonstrated by the above chart, in order to link a file in Mode 5 or Mode 6, the file must

currently be linked. In other words, while it is legal to go to Mode 5 from Mode 6 and vice versa, it is

not legal to execute a FILE statement using Mode 5 or Mode 6 as the initial link for that file number.

Following is a list of the most common file error messages in alphabetical order by first word, and some

of their typical causes.

BAD FILE NAME
1. File name exceeds 16 characters (Modes 1 through 6) or 10 characters (Modes 7 and 8).
2. File name includes blanks and/or disallowed characters.

BUSY/PROTECTED FILE

File Mode 2 executed for a file with a current READ/WRITE access.

2. File Mode 2 executed for a file with Master account and/or System Manager account protection.
(See Appendix A, the CATalog command.)

3. File Mode 2 or 6 executed for a file in a ‘““foreign’’ library which has been shared READ ONLY
with the current user.

6-19

DUPLICATE ENTRY
File Mode 7 executed using the name 6f a file or program already in the current user’s library.

NO SUCH FILE

1. File Mode 1, 2 or 8 executed for a file name which does not exist in the current user’s library.
2. File Mode 1 or 2 executed for a file in a ‘““foreign” library to which the current user has been
granted no shared privileges.

NON-EXISTENT FILE REFERENCED

File Mode 5 or 6 executed for a file not previously linked in the current or chained program.
WRITE TRIED ON READ ONLY FILE

File PRINT statement executed with file linked in Mode 1, 3 or 5.

Of particular interest in this discussion are File Modes 3, 4, 5 and 6. Mode 3 (READ ONLY) and Mode
4 (READ/WRITE) are constructed to avoid terminal errors due to attempts to link a non-existent file
or a file with an existing READ/WRITE access.

If the referenced file does not exist, then a FILE statement specifying Mode 3 and Mode 4 will de-link
any file previously linked using the specified file number. The same is true if Mode 4 is used in an
attempt to link a file with an existing READ/WRITE access. For example, assume that the file MYFILE
has a current READ/WRITE link on another port. The success of the attempted link may be tested
using the TYP function.

0010 FILE #1,1;MYFILE”

0020 PRINT “TYPE OF FILE #1, MYFILE IS ;TYP(1)

0030 FILE #1,4;MYFILE”

0040 PRINT “TYPE OF FILE #1, MYFILE IS ¢;TYP(1)
9959 END

RUN

TYPE OF FILE #1, MYFILE IS 1
TYPE OF FILE #1, MYFILE IS 0

DONE

Attempts to read from or write to a de-linked file will generate terminal errors. For example, assume
that MYFILE has a current READ/WRITE link on another port:

6-20

L

0019 FILE #1,1;“MYFILE”
0020 READ #1;A

0030 PRINT A

0040 FILE #1,4;“MYFILE”
0050 READ #1;A

0060 PRINT A

0079 END

RUN
87540
NON-EXISTENT FILE REFERENCED IN LINE 50
STOPPED AT 60
X1?
The above program assumes the existence of the file. If neither the existence of the file nor its

availability for WRITE access is established, then the program might be written as follows:

0991 ON ERROR THEN 100

0002 DIM F$(16)

0003 INPUT “FILE NAME: “ F$

0004 FILE #1,3;F$

Pp@5 IF TYP(1) THEN 10

@0@6 PRINT “FILE “;F$;” DOES NOT EXIST.”
00p7 GOTO 9999

0010 FILE #1,6;”

0109 IF REF(6) #46 THEN 200

9101 PRINT “NO WRITE ACCESS TO FILE ";F$
0192 RESUME 9999

9200 ON ERROR THEN 9

9999 END

Line 4 attempts to link the file in Mode 3. If the file exists, and is shared with the present user, even on
a READ ONLY basis, the TYP(1) in Line 5 will yield a positive number, and the attempt will be made
to link the file in Mode 6. If the file has been shared READ ONLY, then Line 10 will generate an error
code 46 — BUSY/PROTECTED FILE which will be picked up by the error routine. If an error other
than 46 is encountered, the user will be told the line number in which the error occurred, and then the

error routine and the program will be exited.

Clearly, to facilitate the cooperative and simultaneous use of files, it is desirable to relinquish WRITE
links as soon as they are not needed. Mode 5 (READ ONLY) enables rapid-fire switching between
READ/WRITE and READ ONLY links to a file. Modes 5 and 6 execute more rapidly than do Modes 1

through 4 because only the file number is referenced, and not the file name.

6-21

The following program reads pairs of records from a file, and based on the data in record A, takes the @
d

appropriate action to update record B. Specifically, the file MYFILE has 10 records. Each odd-numbere

record contains either a string “I’’ (for “increment’’) or a string “D”’ (for ‘‘decrement’’). Each even-

numbered record contains an integer between 1 and 10. The integer in the even-numbered record is

either increased by 1 or decreased by 1, depending on its present value, and on the value of the string

in the odd-numbered record which precedes it.

LIS
PROG1

9919
9920
9939
go4g
ga59
ga69
ga79
gosg
pa99
9199
g11g
@129
9138
gl4ag
2158
gleg
9179
g18¢
g1og
g200
g21¢
g229
@230
g240
g25¢
g260
@279
g28g¢

RUN
PROG1

UPDATE

I5
DONE
RUN
PROG1

UPDATE

I6
DONE
RUN
PROG1

UPDATE
I7
DONE
RUN
PROG1

UPDATE

FILE #1,1;"MYFILE"

ON END #1 THEN 219

X=1

y=2

FILE #1,6;""

READ #1,X;P$

READ #1,Y;N

IF (N<1¢) AND (N>1) THEN IF P$="D" THEN 16
IF (N<1@) AND (N>1) THEN IF P$="I" THEN 14¢
IF N<2 THEN 13¢

PRINT #1,X;"D"

GOTO 168

PRINT #1,X;"I"

PRINT #1,Y;N+1

GOTO 17¢

PRINT #1,Y;N-1

FILE #1,5;""

X=X+2

Y=Y+42

GOTO 5§ w
PRINT “"UPDATE COMPLETE..." ‘

PRINT

FOR I=1 TO 1§ STEP 2
READ #1,I;A$

READ 41, (I+l);A
PRINT AS;A;" ";
NEXT I
END

COMPLETE. ..

D 6 D9 I2 D 4

COMPLETE. ..

D5 D 8 I3 D 3

COMPLETE. ..

D 4 D 7 I 4 D 2

COMPLETE...

D 3 D 6 I5 D1 ‘l

6-22

LINK FILE
TO
READ ONLY
(LINE 10)

v

SET END-OF-
FILE FLAG
(LINE 20)

o

RE-LINK FILE
TO
READ/WRITE
(LINE 50)

v

READ NEXT
RECORD PAIR
P$ - FIRST RECORD
N = SECOND RECORD
{LINES 60 AND 70)

SET P§ = “D”
WRITE BACK
TO FILE
(LINE 110)

DECREMENT N
BY 1 AND
WRITE BACK TO
FILE
{LINE 160)

v

N >1 AND P$ = “D"’
{LINE 80)

OUTPUT “UPDATE
COMPLETE” TO
TERMINAL
(LINE 210)

v

READ NEW VALUES
FROM FILE AND
OUTPUT TO
TERMINAL
(LINES 230 TO 270)

SETP$="1"
WRITE BACK
TO FILE
(LINE 130)

INCREMENT N
BY 1 AND
WRITE BACK
TO FILE
(LINE 140)

y

v

RE-LINK FILE
TO READ ONLY
(LINE 170)

y

6-23

Chapter 7
COMMAND FILES

A command file is a series of BASIC-X commands and/or program statements and/or program input
which is stored in an ordinary BASIC-X file. Command files are said to be “executed” instead of
being “read from’ or “written to”. This is because the commands and program statements in the
file are executable directly from the file, as though they were being read from paper tape. The

COMmand command is used to execute a command file and the syntax is,

COM-filename

FEATURES

1. The command file is composed of strings. Each string in the file is a separate command, state-
ment or program input line. Any numeric values in the file are ignored by the COMmand
command.

The strings are stored in a command file in the normal way, via a program.
Command files are not linked during their execution, and could be closed or written to at

that time. One of two error messages would be generated in this event:
COMMAND FILE MISSING

and
COMMAND FILE MODIFIED

mean that during execution of a command file the system referenced the file for the next input
line and discovered that the file had been accessed from another port.

4. Command files residing in libraries other than the current user’s own may be accessed if they
are shared READ ONLY or READ/WRITE, as follows:

COM-$$$file

executes a command file in the System public library
COM-$$file

executes a command file in the Master public library
COM-$file

executes a command file in the Group public library
COM-#account, file

executes a command file in another user’s library.

7-1

Command files are executed serially beginning with the first record in the file. Execution of a com-

mand file is stopped when the system encounters:

A. the end of the file

a file mark in the file

an abort (stopping a program with two BREAKs)

an Execute Immediate condition (one BREAK or executing a STOP statement)

a syntax error

W E D 0w

a COM command with a filename parameter (a COM command without a filename

parameter, encountered during execution of a command file, is ignored)

If execution of a command file is stopped before the end of the file is reached, execution of the file

may be resumed by typing COM without the filename.

Command files cannot be “nested”. That is, if a COMmand command with a filename parameter
occurs in a command file, the system stops executing the current command file and begins executing

the next command file.

Execution of a command file is stopped if the system encounters a syntax error, and the system prints
an error message, but not the number of the line in which the error occurred, unless the program entry
is preceded by the TAPe command. For example, if the following strings are stored in a file named
EXEC:

TAP

10 PRINT “EXAMPLE
20 END

KEY

then the command COM-EXEC will produce the following result:

NO CLOSING QUOTE IN LINE 10
LAST INPUT IGNORED, RETYPE IT

then the system will read and attempt to execute the next string in the command file. This would be
inconvenient if, for example, the next string in the command file were RUN. Without the TAPe

command, the output from incorrectly entering Line 10 would be:
NO CLOSING QUOTE

and the execution of the command file will stop. In either case the improperly typed line will be

ignored by the system and not stored as part of the program.

Errors encountered during execution of a program in a command file will invariably cause execution
of the command file to stop and the appropriate error message, including line number, to be printed,

whether or not the TAPe command was used during program entry. The only exception to this is in

7-2

the case of WARNING ONLY errors which do not cause the command file to stop. For example, if

the following strings are stored in a file named EXEC:

TAP

10 PRINT B
20 END
KEY

RUN

then the command COM-EXEC will produce the following result:

UNDEFINED VALUE ACCESSED IN LINE 10
STOPPED AT 20
XI?

At this point, execution of the command file is stopped, and the program error has caused the system
to go to Execute Immediate mode. All the options normally available in Execute Immediate are open

to the user. He may, if he wishes, modify the program, RUN it, and then type
i COM
to continue execution of the command file.

The following is typical of a program that might be used to write strings to a command file:

0010 DIM AS[254]

@020 FILE #1,2;"EXEC"
#0308 READ #1,1

9040 ON END #1 THEN 200
9858 INPUT "COMMAND: ",AS
p@608 IF AS="" THEN 9999
#07¢ PRINT #1;AS

9088 GOTO 50

@206 PRINT "END OF FILE"
9999 END

This program permits the user to specify both the file name and the file commands interactively. The

program could just as well specify these items internally. For example,

7-3

#0190 FILE #1,2;"EXEC"

PP20 PRINT #1;"SCR"

8030 PRINT #1;"TAP"

@040 PRINT #1:;"10 DIM B(S),C(5)"
9050 PRINT #1;"20 MAT READ B"
#0860 PRINT #1;"30 DATA 20,63,4647,811,6"
#0708 PRINT #1;"35 RESTORE"

@880 PRINT #1;"40 MAT READ C"
#0906 PRINT #1;"56 MAT C=B+C"
#1600 PRINT #1;"60 MAT PRINT C"
#1168 PRINT #1;"70 END"

8128 PRINT #1;"SAV-MATMULT"

#1380 PRINT #1;"RUN"

9999 END

It is good practice to precede entry of program statements with the SCRatch command as in Line 20
above, so as to avoid any possibility of overlaying a program currently in the work area with a program

defined within the command file. Executing the file named EXEC will produce the following result:

COM-EXEC

40
126
814
1622
12
DONE

7-4

Appendix A
COMMANDS

Commands fall into three categories:

1. System Commands
2. Edit Commands
3. Library Commands

In general, the format for issuing any command is,
COMmand-parameter,parameter

Only the first three letters of any command are necessary for the system to recognize the word.
For this reason, the syntax illustrations for commands are shown with the first three letters cap-
italized and the rest in lower case. Actually, the system recognizes upper or lower case, and the

entire command word may be typed, if desired.

Some commands may be used without explicit parameters. In these cases the parameters have
default values, and only the command word itself need be typed if the user finds the default values
acceptable. Where explicit parameters are used, the command word must be followed by a hyphen
(-) and then by the parameter(s). Where multiple parameters are specified to a single command,

the parameter values must be separated by commas.

Execution of a command is followed by a system-generated X-ON (tape reader ON) character. This
means that a series of commands could be punched on paper tape and then executed without inter-

vention from the user. For example, the following series might be executed from paper tape:

HEL-A123
GET-MYPROG
RUN-100
14327

85

607

BYE

A o

Lines 4 through 6 represent data to be typed in response to INPUT statements in the program

named MYPROG. The remaining lines, 1 — 3 and 7 are commands. Because the system gen-

erates X-ON characters after it executes each command, each line from the tape is read automatically.

For further information regarding the use of paper tape, see Appendix D.
A-1

SYSTEM COMMANDS

1.

BYE
logs the user off the system, and turns off any active command files for that port. The

BYE command has no parameter.

CAR-N (CARriage-N)

sets the logical line width in number of characters per line. N must be an integer in the
range 20 to 255, or it must be 0. The command CAR-O sets the carriage width to
“unlimited”. This feature is used for plotting on terminals, for CRT cursor control, for
backspacing and for various other special applications. The default setting of the CAR

command is 72.

CRD-N

sets the Carriage Return Delay to N character times. For example, if the port is operating
at 10 characters per second (10 CPS or 110 baud) then CRD-25 will set the carriage return
delay to two and one half seconds. The CRD command must always have one and only

one explicit parameter. N must be in the range 0 to 100, and the default value is O.

DAT (DATe)
gives today’s date and the time of day, e.g.,

DAT
TUE 11-MAY-76 03:45PM

ECHO-OFF
and
ECHO-ON
All terminals are assumed by the system to be operating in ECHO-PLEX (sometimes also
called FULL DUPLEX) mode. If there is a “HALF/FULL” switch on the terminal it should
be set to “FULL”. If there is no switch and the terminal operates only in HALF DUPLEX
mode, then the user should adjust the computer’s transmission mode by typing,
ECHO-OFF
Echo-plex transmission is restored by typing
ECHO-ON
OFF and ON are the only two parameters available to the ECHO command.

FFD-N
sets the Form Feed Delay where N = character times as for the CRD command. The FFD
command must always have one and only one explicit parameter. N must be in the range

0 to 100, and the default value is O.
A-2

HEL-account,password (HELlo-account,password) m

logs the user onto the system. Both parameters must be explicit and must have a specified

form:

a. Account is the user’s account number. It must be a one letter, three digit combina-
tion, e.g.,

X123

b. Password is the ‘“lock” on the account number which helps prevent unauthorized
use of the account. For further information, see the section on Log ON/OFF
procedures.

LFD-N

sets the Linefeed Delay where N = character times as for the CRD command. The LFD

command must always have one and only one explicit parameter. N must be in the range
0 to 255, and the default value is O.

RAT-N!! (RATe-N!!)

The rate of character transmission is set port by port at the computer. Once logged on,

the user may adjust the baud rate via the RATe command.

N is the desired baud rate. The exclamation points are used only if the desired baud rate or G
bits/word is non-standard. The standard rates are, 110 baud/11-bit words and 150, 220, d
300, 440, 600, 880, 1200 and 2400, all with 10-bit words. If the desired rate is 880 baud

with 10-bit words, then the command would be typed,

RAT-880
and if the desired rate is 880 with 11-bit words then the command would be typed,
RAT-880!!
Any time a non-standard baud rate is chosen, there must be at least one exclamation point
to tell the computer explicitly which bit pattern is desired. The user is cautioned that if
the rate is set on a hardwired terminal to some rate that the terminal can’t use, the terminal
must be evicted by the System Manager in order to restore the default rate of 110 baud/
11-bit characters.

WA-3

10. ROS (ROSter)

shows which port(s) the inquiring account number is using, the other ports currently in use

(++++), and the other inactive, available ports (. ...). In a sixteen port system, for example,
ROS
++++ ++++ ... Al123 ++++
++++ ++++ 4+ L, .. A123

shows that account A123 is logged on to ports 3 and 15, other users are logged on to ports
0,1,4,11,12 and 13, and the remaining ports are unoccupied.

11. TIM (TIMe)
gives in hours to the nearest hundredth,
connect time since last log-on
on-port time since last system re-set
off-port time since last system re-set
total on-port plus off-port time
On-port time is time used by an account on the port dedicated to that account, if one exists.
Off-port time is time used by an account on any port other than a dedicated port. If there
is no dedicated port for a given account, then all time used by that account is considered
to be off-port time. For example,

TIM
TIME IN HOURS:

CONNECT = 000.04

ON-PORT = 000.00
OFF-PORT = 005.23
TOTAL = 005.23

EDIT COMMANDS
The following commands modify or refer to the BASIC program currently in the user’s work area.

1. DEL-M,N (DELete-M,N)
erases lines M through N of the current program. The N parameter is optional and if omitted,
then lines M through the last line in the program are erased.

2. LEN (LENgth)
prints the length, in words, of the current program. SOURCE LENGTH reflects the amount of
disk space required to SAVe the program. If the program has been RUN, then the COMPILED
LENGTH is also printed, and reflects the amount of memory the program requires while running.

Some guidelines for calculating space requirements are:

1. there are about 10,112 words of memory available to the user
[38

A-4

2 words are required for each defined variable and each defined array element m
about 11 to 14 words are used per average BASIC program statement
each character in a string requires 1/2 word, and each string requires 1 + INT
[(N+1)/2] words
5. each open file requires a 134-word buffer (linking a file with reference number 6,
for example, creates one 134-word buffer for each of files 1, 2, 3, 4 and 5 if they
are not already linked, in addition to the 134-word buffer for file 6.)

6. REM statements require 3 words plus 1 word for every two characters in the comment

The LENgth command has no parameter.

3. KEY
removes the user from the TAPe mode. The KEY command has no parameter.

4. LIS-N (LISt-N)
causes the system to list the current program. The N parameter is optional and if specified,
the program is listed starting with statement number N. If the parameter is not specified,

listing starts with the first statement. In either case the program is listed to its last statement.

5. NAM-PROGRAM (NAMe-PROGRAM)

gives the current program the name specified by the word following the command, in this

case, PROGRAM. The program name may be up to 10 characters excepting blanks, quotation
marks, commas and non-printing characters. The first character of the program name may
not be $ or #.

6. PUN-N (PUNch-N)
causes the current program to be punched on paper tape. The PUNch command works the
same way as the LISt command insofar as the parameter specification is concerned. Output

sequence from the command is,

linefeed
program name
tape on (R€)
leader
program
X-OFF
trailer

tape off (TC)

7. REN-new, increment, start, stop (RENumber-new,increment,start,stop)
renumbers all or some statements in the current program. All four parameters are optional

and if omitted, the default values are, ‘
REN-10,10,1,9999

10.

11.

If the command parameters are specified in such a way as to threaten the existing order of
program statements, the system responds,

SEQUENCE NUMBER OVERLAP
Any line number references in the program such as in GOTO statements are changed to

match the renumbered statements, if appropriate.

RUN-N

The current program is executed. The N parameter is optional and, if omitted, the program
is executed beginning with the first statement. If the N parameter is specified then the
program is executed starting with that statement number or the next higher existing

statement number.

SCR (SCRatch)
erases the current program and program name from the user’s work area. The SCRatch

command has no parameter.

TAP (TAPe)
prepares the computer to receive a program input from paper tape. The system remains in

tape mode until the user explicitly changes the mode, usually by the KEY command.

Syntax error messages are suppressed until program entry is complete, but statements con-
taining errors are automatically deleted from the program. If the system found errors

during input, then when a system command is entered the error messages will be printed out.
If no error messages are pending then the system command will be executed. The KEY com-

mand is used for this purpose. The TAPe command has no parameter.

XPU (XPUnch)
works exactly the same as the PUNch command except that an X-OFF is punched immedi-

ately following each program statement, just before the carriage return and linefeed.

LIBRARY COMMANDS

1.

ABO-program (ABOrtable-program)
restores abortable status to a formerly non-abortable program. The ABOrtable command is
effective when issued by the same account which rendered the program non-abortable, or by

a higher-level account.

A-6

APP-programname (APPend-programname)
retrieves and appends the referenced program to the current program in the user’s work area.
The first statement number of the referenced program must be higher than the last state-
ment number of the current program, otherwise the system will respond:

SEQUENCE NUMBER OVERLAP
and the command will be ignored. $ symbols preceding the program name are treated as

they are in the GET command.

To reference a program which resides in a foreign library and which has been shared with the

current user, the syntax is,

APP-#account,program

The user is cautioned that if the referenced program is RUN ONLY then the (now combined)
current and appended programs will be RUN ONLY, and not available to LISt, PUNch,
XPUnch, DELete, or any editing command.

CAT-M,N (CATalog-M,N)

prints out detailed information about the user’s own library. Both parameters are optional
and refer to the serial number of the catalog entries, the newest entries coming highest in
the list. If the N parameter is omitted then the catalog listing begins with the serial number
specified by M and continues to the earliest entry in the catalog. If the N parameter is
specified then the serial numbers of the entries in the range M through N are printed. If

both parameters are omitted then the entire catalog is printed. For example,

CAT

S/N NAME CODE LEN. SECT. SAVED ACCESS USE
00889 EVERYONE N7 00063 0001 191/75 191/75 00000
#0088 PEREOOS P4 00003 @601 191/75 191/75 00000
000887 PROGMAOS 4p 00003 0001 191/75 191/75 00000
00086 PER@PVO2 P2 00063 0601 191/75 191/75 00000
00085 PROQGA2 2p 00003 @001 191/75 191/75 00000
09084 PERMASTER Pl 00063 66061 191/75 191/75 00009
99083 PROMASTER 1p 00003 0001 191/75 191/75 00060
00082 PK/MODE P 00320 0003 188/75 188/75 00000
00080 EXAMPLE P 00249 0003 182/75 182/75 00000
00879 TESTFILE F 00010 0011 182/75 182/75 00061
09871 TEST F 00010 0011 182/75 182/75 00004
#9870 TESTPROG P 00036 0001 181/75 181/75 00000
00064 PRINTUSING P pB205 0002 178/75 178/75 00001
00858 PS8-1 P 00046 006061 171/75 171/75 00000
90057 MAT P 90962 @001 167/75 167/75 00003
90056 TESTREC4 P 00060 0001 162/75 162/75 00000
#0054 DUMMY4 F 09001 0002 162/75 162/75 00008
90053 TESTREC3 P 00163 0B02 162/75 162/75 00001
00B52 TESTREC2 P 90112 0001 162/75 162/75 00004

A-T

PA@51 DUMMY3 F 00001 0002 162/75 162/75 00020
00B50 DUMMY2 F 00005 0006 162/75 162/75 00006
00049 TESTREC P 90142 0002 162/75 162/75 00003
00048 DUMMY1 F 00005 0006 162/75 188/75 00034
00047 PROG2 P g0030 0001 156/75 156/75 00001
09046 PROGI P 90074 0001 156/75 156/75 00002
pP042 MATMULTI P @0165 0002 155/75 155/75 00000
09041 MATMULT2 P 909213 00H2 155/75 155/75 00003
00038 RANDOM P pPG33 90Ol 153/75 153/75 00601
00029 MATS P 00110 0001 143/75 143/75 00001
00028 STRINGMATH P 00044 @001 141/75 143/75 00002
00024 FX2 P #0279 0003 114/75 136/75 00007
09023 FX1 P p@386 0004 114/75 136/75 00002
P

00018 DISCOUNT 90226 0002 099/75 ©99/75 00000

TOTAL STORAGE = 00080 SECTORS

CAT-89,86

S/N NAME CODE LEN. SECT. SAVED ACCESS USE
@9889 EVERYONE N7 096063 0001 191/75 191/75 00000
p@d088 PER@OOS P4 Q0003 0601 191/75 191/75 06000
90087 PROGBAS 4p 00003 @001 191/75 191/75 00000
00086 PER@QO2 P2 000603 0001 191/75 191/75 00000
CAT-84

S/N NAME CODE LEN. SECT. SAVED ACCESS USE

90084 PERMASTER Pl 00063 6601 191/75 191/75 00000
09083 PROMASTER 1p p90603 @681 191/75 191/75 00000
00082 PK/MODE p P9320 0GO3 188/75 188/75 00000
0

ABORT

S/N is the sequence in which the catalog entry was made
NAME is the name of the file or program entered in the catalog
CODE indicates whether the catalog entry is a file or a program
The numbers to the left and right of the code letters give the type and level of
protection
1 is Master Account protection
2 is System Manager protection

3 is Master Account and System Manager protection

4 is factory protection \

5 is factory and Master Account protection

6 is factory and System Manager protection

7 is factory, System Manager and Master Account protection

For programs, the code letter N means that the program is non-abortable, and the
code letter P means that the program is abortable. A number to the left of the
letter means that the program cannot be LISted, and a number to the right of the

A-8

10.

letter means that the program cannot be KILled. For files, the code letter F means
that the file is OPEn, and a code letter C means that the file is being CLOsed. A
number to the left of the letter means that the file is READ ONLY, and a number
to the right of the letter means that the file cannot be CLOsed.

LEN. is the number of words of storage required to save a program or the number of records
available in a file

SECT. is the number of disk sectors (records) used to save the program or file

SAVED is the date on which the program or file was last saved

ACCESS is the date on which the program or file was last accessed

USE is the number of accesses since the program or file was saved or opened, respectively

CLO-filename (CLOse-filename)

deletes the referenced file from the user’s library and overwrites it with End-Of-File marks.

GET-programname

retrieves the reference program into the user’s work area. To GET a program which resides

in a foreign library and which has been shared with the current user, the syntax is,
GET-#account,programname

When the programname parameter is preceded by one $ symbol, the Group Library is searched.

Two $ symbols cause the Master Account Library to be searched for the program. When three

$ symbols precede the program name, the System Public Library is searched. If no $ symbol

precedes the program name then the user’s own private library is searched.

HID-name (HIDe-name)

veils the named file or program from the INDEX command but not from the CATalog
command

IND (INDex)

gives a summary listing of the contents of the user’s library. File names are preceded by an
asterisk.

KIL -programname (KILl-programname)

erases the referenced program from the user’s library.

NON-programname
renders the referenced program non-abortable. If a master account desires to make a

program in another library non-abortable then the command must be typed,

NON-#account,programname

OPE-filename, size (OPEn-filename,size)

creates a file with the chosen name and the specified number of records. Filename may be
A9

up to ten printing characters excepting commas, quotation marks, embedded blanks, lower
case letters and leading # or $ symbols. Size is the maximum number of records that
may be filled with data for that file. It must be in the range 1 to 9502, and is functionally

dependent on the available disk space and/or the user’s storage limit, whichever is smaller.

11. RED-oldname,newname (REDesignate-oldname,newname)
changes the name of the specified file or program from oldname to newname. The Use
Counter is set to @ and the date Accessed is set to the date that the RED command is

executed. The entry’s Saved date and Serial Number are unchanged.

12. SAV-programname (SAVe-programname)

adds the current program to the user’s library. The programname parameter is unnecessary
if the current program already has an acceptable name. (See the NAMe command.) While
it is legal to name and save the current program in the same execution of the SAVe com-
mand, a name used in a SAVe command has no effect on the name of the copy of the pro-
gram still in the user’s work area. If there already exists a program with the same name in
the user’s library the system will respond:

DUPLICATE ENTRY
if the user wishes to replace the existing program in his library with the current program
the command sequence is,

KIL-programname

SAV-programname

13. SEE-name

unveils the named file or program to the INDex command.

14a. SHA-filename,account,R (SHAre-filename,account,R)
shares the referenced file with the named account. The R parameter is optional, and grants
READ ONLY access to the file. The file owner still retains READ/WRITE access to the
file in this case. If the file is shared with account @001 then it is in effect, shared with all

accounts.

14b. SHA-program,account (SHAre-program,account)

shares the named program with the named account.

15. UNS-name,account (UNShare-name,account)
revokes all shared access privileges to the name program or file for the named account. Al-
though the form UNS-filename,@001 does in effect revoke all shared privileges to all accounts,
it is only effective if the original SHAre command used the @001 account number. To revoke

the entire shared list for a file or program:

UNS-name
A-10

DEC OCT
0 000
1 001
2 002
3 003
4 004
5 005
6 006
7 007
8 010
9 011

10 012
11 013
12 014
13 015
14 016
15 017
16 020
17 021
18 022
19 023
20 024
21 025
22 026
23 027
24 030
25 031
26 032
27 033
28 034
29 035
30 036
31 037

TTY
NAME KEYS DEC OCT
NUL P(cs) 32 040
SOH A(c) 33 041
STX B(c) 34 042
ETX C(c) 35 043
EOT D(c) 36 044
ENQ E(c) 37 045
ACK F(c) 38 046
BEL G(c) 39 047
BS H(c) 40 050
HT I(c) 41 051
LF J(c¢) 42 052
VT K(c) 43 053
FF I(c) 44 054
CR M(c) 45 055
SO N(¢) 46 056
SI 0O(c) 47 057
DLE P(c) 48 060
DC1 Q(c) 49 061
DC2 R(c) 50 062
DC3 S(c) 51 063
DC4 T(c) 52 064
NAK U(c) 53 065
SYN V(c) 54 066
ETB W(c) 55 067
CAN X(c¢) 56 070
EM Y(c¢) 57 071
SUB Z(c) 58 072
ESC K(cs) 59 073
FS L(cs) 60 074
GS M(cs) 61 075
RS N(cs) 62 076
US O(cs) 63 077

Appendix B

ASCII CHARACTER SET

*The location of these keys may vary on some ASCII keyboards.

DEC NAME
0 NUL
1 SOH
2 STX
3 ETX
4 EOT
5 ENQ
6 ACK
7 BEL
8 BS
9 HT

10 LF

NOTE: (s)

()
(cs)

DESCRIPTION

Null

Start of Heading
Start of Text
End of Text

End of Transmission
Enquiry
Acknowledgment
Bell

Backspace
Horizontal Tab
Line Feed

TTY TTY TTY
NAME KEYS DEC OCT NAME KEYS DEC OCT NAME KEYS
spa. 64 100 @ p(s)* 96 140 *
! 1(s) 65 101 A 97 141 a
”? 2(s) 66 102 B 98 142 b
3(s) 67 103 C 99 143 ¢
$ 4(s) 68 104 D 100 144 d
% 5(s) 69 105 E 101 145 e
& 6(s) 70 106 F 102 146 f
’ 7(s) 71 107 G 103 147 g
(8(s) 72 110 H 104 150 h
) 9(s) 73 111 I 105 151 i
* :(s) 74 112 J 106 152 i
+ 5(s) 75 113 K 107 153 k
, 76 114 L 108 154 1
- 77 115 M 109 155 m
. 78 116 N 110 156 n
/ 79 117 0 111 157 o
0 80 120 P 112 160 p
1 81 121 Q 113 161 q
2 82 122 R 114 162 r
3 83 123 S 115 163]
4 84 124 T 116 164 t
5 85 125 U 117 165 u
6 86 126 A 118 166 v
7 87 127 w 119 167 w
8 88 130 X 120 170 X
9 89 131 Y 121 171 y
: 90 132 Z 122 172 A
; 91 133 [K@s)* 123 173 | *
< »(s) 92 134 \ L(s)* 124 174 | *
= -(s) 93 135] M(s)* 125 175 } *
> .(s) 94 136 1 N(s)* 126 176 v *
? [(s) 95 137 < O(s)* 127 177 DEL *
LEGEND
DEC NAME DESCRIPTION DEC NAME DESCRIPTION
11 VT Vertical Tab 22 SYN Synchronous Idle
12 FF Form Feed 23 ETB End of Transmission Blk.
13 CR Carriage Return 24 CAN Cancel
14 SO Shift Out 25 EM End of Medium ,
15 SI Shift In 26 SUB Substitute 1
16 DLE Data Link Escape 27 ESC Escape |
17 DCl1 Device Control 1 28 FS File Separator
18 DC2 Device Control 2 29 GS Group Separator
19 DC3 Device Control 3 30 RS Record Separator
20 DC4 Device Control 4 31 US Unit Separator
21 NAK Neg. Acknowledge 127 DEL Delete (Rubout)

Means Hold Shift Key Down
Means Hold Control Key Down
Means Hold Both Keys Down

B-1

Appendix C
ERROR MESSAGES

The following is a list of program error messages that a user might encounter during program

entry or program execution. The messages are logically grouped by program statement type.

SYNTAX ERRORS

A e

© ® 2o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

OUT OF STORAGE

ILLEGAL OR MISSING INTEGER

EXTRANEOUS LIST DELIMITER — usually extra punctuation in a file operation

MISSING ASSIGNMENT OPERATOR

CHARACTERS AFTER STATEMENT END — usually extraneous characters in a list
of variables or data

MISSING OR ILLEGAL SUBSCRIPT

MISSING OR BAD LIST DELIMITER

MISSING OR BAD FUNCTION NAME

MISSING OR BAD SIMPLE VARIABLE

MISSING OR ILLEGAL ‘OF’

MISSING OR ILLEGAL ‘THEN’

MISSING OR ILLEGAL ‘TO’

MISSING OR ILLEGAL ‘STEP’

MISSING OR ILLEGAL DATA ITEM

ILLEGAL EXPONENT

SIGN WITHOUT NUMBER

MISSING RELATIONAL OPERATOR

ILLEGAL READ VARIABLE

ILLEGAL SYMBOL FOLLOWS ‘MAT’ — matrix operation error

MATRIX CANNOT BE ON BOTH SIDES — matrix operation error

NO ‘** AFTER RIGHT PARENTHESIS — matrix operation error

NO LEGAL BINARY OPERATOR FOUND — matrix operation error

MISSING LEFT PARENTHESIS

MISSING RIGHT PARENTHESIS

PARAMETER NOT STRING VARIABLE

UNDECIPHERABLE OPERAND

MISSING OR BAD ARRAY VARIABLE

STRING VARIABLE NOT LEGAL HERE

C1

29.
30.
31.
32.
33.
34.
35.
36.

MISSING OR BAD STRING OPERAND
NO CLOSING QUOTE

254 CHARACTERS MAX FOR STRING
STATEMENT HAS EXCESSIVE LENGTH
ILLEGAL STATEMENT TYPE
OVER/UNDERFLOW(S)

UNDEFINED SYMBOL

MISSING OR BAD FILE REFERENCE

RUN ERRORS

317.
38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.

56.

57.
58.

UNDEFINED STATEMENT REFERENCE

NEXT WITHOUT MATCHING FOR

SAME FOR-VARIABLE NESTED — two or more ‘NEXT’ statements attempt to
reference the same ‘FOR’ variable

FUNCTION DEFINED TWICE

VARIABLE DIMENSIONED TWICE

LAST STATEMENT NOT ‘END’

UNMATCHED FOR — ‘FOR’ statement has no matching ‘NEXT’ statement

UNDEFINED FUNCTION

ARRAY TOO LARGE

ARRAY OF UNKNOWN DIMENSIONS

OUT OF STORAGE

DIMENSIONS NOT COMPATIBLE

CHARACTERS AFTER COMMAND END — usually a parameter declared where none
is allowed

INVALID FILE MODE — attempt to link file with meaningless access mode code

NO SUCH FILE

GOSUBS NESTED TEN DEEP — nine is the maximum

RETURN WITH NO PRIOR GOSUB

SUBSCRIPT OUT OF BOUNDS

NEGATIVE STRING LENGTH — expression attempts to define a string with fewer
than zero characters

NON-CONTIGUOUS STRING CREATED — expression-attempts to define a string
with voids between some characters

STRING OVERFLOW

OUT OF DATA

C-2

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

76.
71.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

DATA OF WRONG TYPE

UNDEFINED VALUE ACCESSED

MATRIX NOT SQUARE — certain matrix operations require square matrices

REDIMENSIONED ARRAY TOO LARGE

NEARLY SINGULAR MATRIX — expression results in attempt to divide by zero

LOG OF NEGATIVE ARGUMENT

ARGUMENT OUT OF BOUNDS

ZERO TO ZERO POWER

NEGATIVE NUMBER TO REAL POWER

ARGUMENT OF SIN OR TAN TOO BIG

BAD FILE NUMBER

LAST INPUT IGNORED, RETYPE IT — usually due to static in communications lines

STATEMENT NOT IMAGE — output formatting error

NON-EXISTENT FILE REFERENCED

BUSY/PROTECTED FILE

NO SUCH PROGRAM

CHAINED PROGRAM TOO LARGE — can be caused by defining several very large
arrays in the program, because buffer space is not set aside until run time

WRITE TRIED TO READ-ONLY FILE

END-OF-FILE/END-OF-RECORD

FILE ABNORMAL/UNAVAILABLE

DONE

MISSING FORMAT SPECIFICATION

ILLEGAL OR MISSING DELIMITER

NO CLOSING QUOTE

BAD CHARACTER AFTER REPLICATOR — output formatting error

REPLICATOR TOO LARGE — output formatting error

REPLICATOR ZERO — output formatting error

MULTIPLE DECIMAL POINTS

BAD FLOATING POINT SPEC. — output formatting error

ILLEGAL CHARACTER IN FORMAT — output formatting error

ILLEGAL FORMAT FOR STRING — output formatting error

MISSING RIGHT PARENTHESIS

MISSING REPLICATOR — output formatting error

TOO MANY PARENTHESIS LEVELS

C-3

93. MISSING LEFT PARENTHESIS
94. ILLEGAL FORMAT FOR NUMBER - output formatting error
95. BAD FORMAT FOR STRING NUMBER — misuse of string arithmetic capability

WARNING MESSAGES

96. BAD INPUT, RETYPE FROM ITEM
-97. LOG OF ZERO — WARNING ONLY
98. ZERO TO NEGATIVE POWER-WARNING
99. DIVIDE BY ZERO — WARNING ONLY
100. EXP OVERFLOW — WARNING ONLY
101. OVERLFOW — WARNING ONLY
102. UNDERFLOW — WARNING ONLY
103. EXTRA INPUT — WARNING ONLY
104. BAD STRING — RETYPE FROM ITEM

The following error messages apply only if the issued command is in some way faulty. Otherwise

the command is executed as it is specified.

GET

INVALID NAME

ACCOUNT NOT ON SYSTEM

NO SUCH PROGRAM

NOT A BASIC PROGRAM

ILLEGAL ACCESS

PROGRAM TOO LARGE — computer has old, 8800 word swap area

A o

NAMe

1. ONLY 10 CHARACTERS ACCEPTED
2. $ OR # ILLEGAL AS FIRST CHARACTER

SAVe

$ OR # ILLEGAL AS FIRST CHARACTER
2. DISK FULL
3. EXCEEDS ALLOCATED SPACE ON THIS DISK

C-4

DIRECTORY*FULL

DUPLICATE ENTRY — NO SAVE
NAME TOO LONG

NO PROGRAM NAME

NS ook

RUN

NO PROGRAM
2. CHARACTER AFTER COMMAND END

APPend

INVALID NAME

SEQUENCE NUMBER OVERLAP
ACCOUNT NO ON SYSTEM

NO SUCH PROGRAM

NOT A BASIC PROGRAM
ILLEGAL ACCESS

PROGRAM TOO LARGE

NS o N

DELete

1. NOTHING DELETED — no program, or the line number doesn’t exist in the

current program

KILI

INVALID NAME

NO SUCH PROGRAM
NOT A PROGRAM
NON-KILL PROGRAM

Ll A e

RENumber

1. SEQUENCE NUMBER OVERLAP
2. NO PROGRAM — there is no program currently in the user’s work area

LISt

1. RUNONLY
2. CHARACTER AFTER COMMAND END
C-5

PUNch

1. RUNONLY
2. CHARACTER AFTER COMMAND END

1. RUNONLY
2. CHARACTER AFTER COMMAND END

ABOrtable

INVALID NAME

ACCOUNT NOT ON SYSTEM
NO SUCH PROGRAM

NOT A BASIC PROGRAM
ILLEGAL ACCESS

LA

NON (Non-abortable program)

1. INVALID NAME

2. ACCOUNT NOT ON SYSTEM

3. NO SUCH PROGRAM

4. NOT A BASIC PROGRAM

5. ILLEGAL ACCESS
OPEn

1. DISK FULL

2. EXCEEDS ALLOCATED SPACE ON THIS DISK

3. DIRECTORY FULL — a limit can be set on the number of entries in a user’s directory

4. DUPLICATE ENTRY — a file by that name is already open
SHAre

1. NO SUCH FILE

2. ENTRY IS NOT A BASIC FILE

3. PUBLIC FILE

4. DUPLICATE ENTRY

C-6

SHARED LIST FULL
ILLEGAL REQUEST

UNShare

1. NO SUCH FILE

ENTRY IS NOT A BASIC FILE
PUBLIC FILE

WAS NOT SHARED

WAS NOT PUBLIC

ILLEGAL REQUEST

AR

CLOse

INVALID NAME
NO SUCH FILE
NOT A BASIC FILE
NON-CLOSE FILE
FILE IN USE
CLOSED

S S

CATalog
1. ILLEGAL REQUEST

CARriage

1. 255I1S MAXIMUM
2. 40 IS MINIMUM

CRD (Carriage Return Delay)
1. MAX.DELAY =100 CHARACTER TIMES

FFD (Form Feed Delay)
1. MAX.DELAY =255 CHARACTER TIMES

C-7

LFD (Linefeed Delay)

1. MAX.DELAY =100 CHARACTER TIMES

RATe

2500 BAUD IS MAXIMUM RATE
2. 100 BAUD IS MINIMUM RATE
ALLOWED BAUD RATES ARE:
110 220 440 880 1760
150 300 600 1200 2400

GENERAL SYSTEM ERROR MESSAGES

ABORT — an executing program is terminated non-normally

PLEASE LOG IN — work attempted without prior user identification

EH? — any unrecognized command

RUN ONLY — attempted to add to or delete from a protected program
SWAP ERROR — internal computer error, advise System Manager

BAD FORMAT — usually too few or too many parameters specified

NOT IMPLEMENTED YET — for commands currently under development

C-8

Appendix D
PUNCHED PAPER TAPE

Among the uses for punched paper tape are: a) as a convenient and economical storage medium
for infrequently used programs; b) paper tape containing program input data can be prepared

and corrected off-line and then input to an executing program cleanly and quickly saving connect
time that might otherwise be wasted on input errors and “ponder loops’’; c) programs may be
edited by punching them on paper tape and then reading them into an editing program line by line

as character string data.

| The X-ON, X-OFF feature

Some terminals are equipped with automatic paper tape reader control. If present, this control
allows the paper tape reader to be turned on and off under program control, and is activated
by means of certain control characters on the terminal. (Control characters are formed by
pressing the CONTROL key and while holding it down, striking the indicated letter key.) The
control characters relevant to the paper tape reader are,

QC — activates the paper tape reader (commonly called X-ON)

S¢ — de-activates the paper tape reader (commonly called X-OFF)

Il Creating a punched paper tape

Paper tapes containing program listings may be created on-line by the PUNch or the

XPUnch command.

A. PUNCH

The PUNch command is used when the program will be read back into the system all
at once rather than one line at a time (as for data). It does not require the X-ON, X-OFF

feature on the terminal. To use the PUNch command:

K 1. The terminal LOCAL/OFF/LINE switch is turned to LINE.
| The user is logged on.

8 3. There is a program currently in the user’s work area.

a. Type PUN but do not strike the RETURN key.

b. Turn the paper tape punch to the ON position.

c. Strike the RETURN key.

d. The paper tape is punched.

e. Turn the paper tape punch to the OFF position.

D-1

The output to the paper tape will be,

tape leader
program statement
carriage return
linefeed

program statement
carriage return

linefeed

program statement
carriage return
linefeed

X-OFF (8%

tape trailer

XPUnch

The XPUnch command works much the same way as the PUNch command except
that an X-OFF character is inserted after each program statement, before the carriage
return. This makes the program look like data to the computer, and is suitable for
punching a program which will be edited by another, executing program, but is unsuit-
able for punching an executable program. A program tape prepared by the XPUnch
command must be read to an editing program only on a terminal equipped with

the X-ON, X-OFF feature. To XPUnch a program tape:

1. The terminal LOCAL/OFF/LINE switch is turned to LINE.
2. The user is logged on.
3. There is a program in the user’s work area.

a. Type XPU but do not strike the RETURN key.

b. Turn paper tape punch to the ON position.

c. Strike the RETURN key.

d. The paper tape is punched.

e. Turn the paper tape punch to the OFF position.

D-2

The output to the paper tape will be:

tape leader
program statement
X-OFF (S8°)
carriage return
linefeed

program statement
X-OFF (89
carriage return

linefeed

program statement
X-OFF (S%)
carriage return
linefeed

X-OFF (5%)

tape trailer

C Punching programs to paper tape off-line

Programs may be punched off-line using the same output sequence that the PUNch

or XPUnch command would create on-line.

The terminal LOCAL/OFF/LINE switch is turned to LOCAL.
2. The user is not logged on.

a. Turn the paper tape punch to the ON position.

b. Type RC.

c. Depress the SHIFT key, the CONTROL key and the REPEAT key, and then
depress the letter P key. This causes a series of NULLS to be punched on
the tape as a leader to make loading the tape on the reader easier.

d. Type program statement.

e. For the equivalent of an XPUnched tape, type S€. (For the equivalent of a
PUNched tape, omit this step.)

f. Type carriage return.

D-3

Type linefeed.

Repeat steps d. through g. for each line of the program.
Repeat step c.

Type TC.

Turn the paper tape punch to the OFF position.

Programs punched off-line using the XPUnch format can be read by an executing

program only on terminals equipped with the X-ON, X+OFF feature.

Punching data to paper tape off-line

Data are punched to paper tape off-line using the same output sequence that

the XPUnch command would create on-line for a program.

The terminal LOCAL/OFF/LINE switch is turned to LOCAL.

2. The user is not logged on.

&

om0

e

[

Turn the paper tape punch to the ON position.

Type RC.

Depress the SHIFT key, the CONTROL key and the REPEAT key, and
then depress the letter P key. This causes a series of NULLS to be punched on
the tape as a leader to make loading the tape on the reader easier.

Type line of data, including comma separators where appropriate.
Type SC.

Type carriage return.

Type linefeed.

Repeat steps d. through g. for each line of data.

Repeat step c.

Type TC.

Turn the paper tape punch to the OFF position.

Reading punched paper tape into the computer

The TAPe command is used to read a program into the computer from punched paper tape,

and the KEY command removes the computer from tape mode.

The user is reminded that the computer views program entry from paper tape mode just as
it would program entry from the terminal keyboard. In particular, this means that while

erroneous program statements will generate error messages, they will not be included in the

D-4

computer’s copy of the program. This is identical to the way the computer deals with
erroneous program statements typed in from the keyboard. In order for these statements to
be included in the computer’s copy of the program, they must be correctly re-entered,

either from the keyboard, or from additional paper tape.

A TAPe

The TAPe command alerts the computer that the next input will be from paper tape. It

is commonly used to read programs in PUNch format and not data from paper tape.

1. The terminal LOCAL/OFF/LINE switch is turned to LINE.
2. The user is logged on.

3. The user’s work area is clear.

4

The paper tape to be read is located into the tape reader.

a. Type TAP and strike the RETURN Kkey.
b. Turn the paper tape reader to the ON position.

e

The tape is read and echoed at the terminal.

d. After the tape is read, turn the paper tape reader to the OFF position.

While the computer is in tape mode, error messages are suppressed. Input of any
command causes termination of tape mode, and output of waiting error messages.

The KEY command is commonly used for this purpose.

B KEY

The KEY command alerts the computer that the next input will be from the terminal
keyboard, thus:

1. Type KEY and strike RETURN

If error messages were generated from entry of the program tape, they will be printed.
If no error messages were waiting, then there will be no output, and the computer

will be ready for the next command, usually a SAVe command or a RUN command.

C Inputting data from paper tape to an executing program

To read a data tape into an executing program, the terminal must be equipped with
the X-ON, X-OFF feature. The procedure is:

1. Terminal LOCAL/OFF/LINE switch is turned to LINE.
2. The user is logged on.

D-5

3. The executing program contains one or more INPUT statements.

a.

If the INPUT statement is of the form

0013 INPUT item,item,item
then the ? symbol and an X-ON character (Q€) will be output automatically.
Data are read from the tape until an X-OFF character (S€) is encountered. (The
user is reminded that a string of more than 254 characters will generate a
terminal error.)
If the INPUT statement is of the form

0013 INPUT “‘string”,item,item,item
then the last character in “string” must be an X-ON (QF) in order to activate
the tape reader. “string” will be output, and then data are read from the tape in

the same way as from the INPUT statement form under item 3.a. above.

D-6

Appendix E
PUBLIC LIBRARY UTILITY PROGRAMS

The System public library contains over 100 programs which are available to the user. The programs
discussed in this Appendix are those which bear some relation to other material covered in this
Manual, as for example, the LIST utility program to the LISt command. The entire contents of the
System public library is cataloged and described in the Public library index manual.

1. CATALOG (GET-$$$CATALOG)

Outputs the user’s library catalog to a (pre-existing) file or to the terminal. If outputto a file, each

catalog entry (file or program) is a 43-character string which contains the following information:

CHARACTERS DATA
1—5 Serial Number
6—15 Name
16 —18 Code
19 —23 Length
24 — 28 Sectors
29 — 33 Saved Date
34— 38 Accessed Date
39 —43 Uses

There are 5 catalog entries per file record, beginning in record 2. The first record contains the date
that the catalog was written to the file. For example, the following library catalog is written to a
file named CATFILE:

CAT

S/N NAME CODE LEN. SECT. SAVED ACCESS USE

20234 PTUSG3
9231 TESTP
PB229 MYPROG

goe34 00691 127/76 127/76 ¢00Y0
99178 0@@2 125/76 125/76 B0003
90172 6002 124/76 138/76 (0006

E1

02265 CATFILE F g9¢07 0008 138/76 138/76 06002
03258 PORTS p 00%64 9001 132/76 132/76 99601
80253 PROG P #0366 @PaB3 132/76 132/76 00C00
¥P252 FILE F geole @@ll 132/76 135/76 00024
3Y251 WRITE F 69995 9e96 132/76 132/76 U008
P0247 WRITE/EXEC N pA950 20681 132/76 132/76 00001
90246 EXEC F ge01e 2e11 132/76 132/76 (9333
20245 VARS P 00111 9001 131/76 131/76 90000
0244 PROG1 P 20265 2003 127/76 127/76 058060
go243 Yy p ¢ona7 9081 127/76 127/76 Q@300
Po241 X P 80215 00602 127/76 127/76 (8080

P

N

P

#0228 REF
90227 START

00175 0082 124/76 124/76 03000
00138 QU2 124/75 124/76 00038
00222 FILEUPDATE 08233 0982 121/76 121/76 03003
0a262 TIMEOUT 00138 @982 112/76 119/76 389932
88089 EVERYONE N7 99983 0001 191/75 191/75 33080

U oo

00088 PERREZAS P4 @¢0003 0001 191/75 191/75 200840
80687 PRO@OAS 4p 20003 9981 191/75 289/75 00001
80086 PERADN2 P2 960903 @¢0vl 191/75 209/75 90001
99685 PRORAG2 2N 00303 9601 191/75 209/75 03601

pd084 PERMASTER Pl 09903 0001 191/75 269/75 ¢€0383
60983 PROMASTER 1N Qogp93 9001 191/75 209/75 09662

TOTAL STORAGE = 03868 SECTORS

GET~SSSSCATALOG
RUN
CATALOG

ACCT #, HI S/N, LOW S/N ?2M@50
OuTPUT (T-TERM. F-FILE) 2F
FUOLL FILE NAME ? CATFILE

DONE

The user may output only a portion of his library catalog if he wishes, by specifying a range of

catalog entry numbers fellowing input of the account name and separated from it by commas, thus:

ACCT #, HI S/N, LOW S/N?M050,244,202

2. F-LIST (GET-$$$F-LIST)

The contents of any unscreened file can be listed by the System public library utility program named
F-LIST. The following example lists the contents of records 1 through 4 of the user’s file named
CATFILE.

GET~$SSF~LIST
RUN
F-LIST

FILE NAME ?CATFILE
FILE LENGTH = 7

1ST R#?1
END R#7?24

RECORD: £8@1
76139.
"EOR” [@32 WORDS]

E-2

RECORD: 0032

08265CATFILE PFAR00AT600081387613976000¥4 BG258PORTS OPJB00642G0o0

1132761327632081 @6253PROG 8P2G036600003132761327600009 09252FILE
gF00001900811132761357660924 @B251WRITE BFOB00N59900613276132

7600008

"EOR” [115 WORDS]

RECORD: 9003

D0247WRITE/EXECANAGAN50000311327613276008001 00246EXEC gregngleceel
11327613276086203 OW245VARS PPY0Q111009611317613176009088 ©65244PROG
1 24PaNY26530003127761277606940408 30243Y dPpCB047d088112776127
7600608

"EOR” [115 WORDS]

RECORD: d004

9241X% 0PA0GE2150080021277612776639048 d0234PTUSG3 0P00B2345000
1127761277603000 G@231TESTP PNJE0178690021257612576800083 §0229:YPR
0G QP0NPL720060621247613876803906 00228REF gP0BP17500008212476124
760300060

"EOR” [115 WORDS]

TOTALS: RECORDS 1 THRU 4
NUMERICS 1
STRINGS 15
WORDS 347

DONE

3. LIST (GET-$$$LIST)

Outputs the list of a program to a file or to the terminal. The user specifies the program to be listed,

the file to contain the listing and other information, through a series of name-listed parameters, as

follows:
PARAMETER NAME USE
output list to the terminal T T
output list to a file F F=filename
lowest statement number to be listed L L=number
highest statement number to be listed H H=number
program to be listed P P=programname

E-3

The parameters are entered in response to the word OPTIONS and are separated by commas. For

example, to list a portion of the following program to a file named LISTFILE as well as to the terminal: ‘,\

7

GET~PROG
LIST
PROG

0910 DI} AS[81],B[329],N$[254],08(10]
0920 DIM KS$[3]

0630 DIM L$[254]

0040 DIM CS[254]

§B50 MAT B=2ER

2650 A=0

0072 FILE #1,1;"#W9024,SCH.SRT983"
8080 0$S="0123456789"

0099 N$=".00304878048730487804878"
9100 ON ERROR THEN 300

0119 ON END #1 THEN 306

6120 READ #1;AS$

0130 A=A+l

6140 LS=""

8150 H=1

0160 FOR K=9 TO 33

0178 T=ASC(AS[K:K])

2188 GOSUB 350

199 NEXT K ~
0208 CS$=LS$*N$ ‘
210 FOR J=1 TO 254

8229 IF CS$[J:J]="." THEN 249

230 WEXT J

0246 CS=CS[J:LEN(CS)]

0250 C$=CS*"329"

9260 CS=CS+"1"

927¢ R=INT(VAL(CS))

0280 B[R]=B[R]+1

€299 GOTO 120

9389 PRINT A

#3139 FOR K=1 TO 329

9320 PRINT K,B[K]

8330 NEXT X

8348 END

6356 F=1

0360 KS$S="000"

8370 S=T-INT(T/10)*10

8380 KS[F:F1=0$[S+1:5+1]

0398 F=F+1

3499 T=INT(T/10)

419 IF T#9 THEN 370

@420 FOR G=3 TO 1 STEP -1

430 LS[H:H]=KS$[G:G]

g449 H=H+1

3459 NEXT G ‘
0460 RETURN

@470 END

E-4

OPE-LISTFILE,10
GET-S$SSLIST

RUN

LIST

OPTIONS ? P=PROG,T,F=LISTFILE,L=1560,H=3449
BTI-4003 R.95 18-1AY~756 PROGRAM~- PROG

@160 FOR K=9 TO 33
0170 T=ASC(AS[K:K])
3180 GOSUB 350

0199 NEXT K

2200 CS=LS$*NS

6213 FOR J=1 TO 254
0220 IF CS[J:J]="." THEN 249
0230 NEXT J

824@ C$=CS[J:LEN(CS)]
$250 CS=C$*"329"

0260 CS$S=CS+"1"

8270 R=INT (VAL(CS))
0280 B[R]=B[R]+1

9290 GOTO 129

03¢0 PRINT A

2310 FOR K=1 TO 329
320 PRINT K,B[K]
09330 NEXT K

@349 END

SOURCE LENGTH 366

The parameters may be listed in any order, and all are optional except,

(a) the name of the program to be listed
(b) adestination for the output list (file or terminal — both may be specified, if desired)

All programs to which the user has access may be referenced by the LIST program except those
with a RUN ONLY screen. (Screens are discussed in Appendix A, the CATalog command.) If the
user attempts to LIST a RUN ONLY program, the message

RUN ONLY
will be printed and the LIST program will terminate.

The file into which the referenced program is to be listed must be created before the LIST program
is run, and must be available to the user on a READ/WRITE basis. If the file is unavailable or does

not exist, the error message

FILE NOT THERE OR NOT SHARED

will be printed and the LIST program will terminate.

E-5

The F-LIST utility may be used to display the contents of LISTFILE:

DONE

GET-SSS$SF-LIST
RUN
F~LIST

FILE NAME ?LISTFILE
FILE LENGTH = 14

1ST R#21
END R#¥23

RECORD: 9401
NAM=PROG
"EOR” [U06 WORDS)

RECORD: ©¥802

9169 FOR K=9 TO 33 p17¢e T=ASC (AS[K:K]) 918y GOSUB 358 01990
NEXT X 6200 CS=LS*NS 0210 FOR J=1 TO 254 £5229 IF CS$[J:J]=".

" THEN 24@ #2390 NEXT J 9249 CS$S=CS[J:LEN(CS)] P250 C$=Cs$*"329"
9268 CS=CS+"1"

“EOR” [122 WORDS]

RECORD: 0993

92738 R=INT(VAL(CS)) @289 E[R]=B[R]+1 %5299 GOTO 128 9380 PRINT
A 319 FOR K=1 TO 329 2320 PRINT K,B[K] 6330 NEXT X 0340
END 1 1

"EOF " [080 WORDS]

TOTALS: RECORDS 1 THRU 3
NUMERICS 8
STRINGS 22
WORDS 238

DONE

The LIST utility stores the program code in a format such that the filed program can be modified
by the System public library utility named EDIT. (See the BTI Public Library Manual for details.)

E-6

4. XREF (GET-$$$XREF)

The references in a program (i.e., variable names, functions, etc.) may be broken out and displayed
by the System public library utility program named XREF. The program to be cross referenced
must reside in the user’s library and must be completely unprotected, that is it must appear in the
user’s library catalog as a “P” entry (see Appendix A, the CATalog command). The program cannot

be killed and re-saved, nor can it be redesignated during execution of XREF.

The program named MYPROG,

LIS
MYPROG

9018 DIM AS$[254],#1(5]

@820 DEF FNA(X)=1+INT((N+1)/2)

8030 FILE #1,1;"MYFILE"

0040 z=1

00580 X=TYP(1)

g060 IF X=3 THEN 200

@678 IF X=1 THEN 130

9080 READ #1,2%Z;:;AS

0090 N=LEN(AS)

#1068 PRINT "RECORD ";Z;" CONTAINS A STRING OF ";N
#1190 PRINT “CHARACTERS, REQUIRING ";FNA(N):;" WORDS OF STORAGE."
9128 PRINT

6130 Z=7Z+1

#1480 GOTO 59

@200 PRINT "END OF FILE"

9999 END

may be cross referenced as follows:

GET~SSSXREF
RUN
XREF

05/084/76 8759
FUNCTIONS/STATEMENTS?Y
VARIABLES/LINE NUMBERS?Y
CONSTANTS?Y

ENTER PROGRAM NAME: MYPROG

E-7

(1) -PREDEFINED FUNCTIONS IN MYPROG

INT
LEN
TYP

(2) STATEMENTS ET. AL.

DEF
DIM
END
FILE

4 (FILE)
GOTO
IF
(LET)
PRINT
READ

120
90
5¢

20
19

9999

39
10 30
140
60 70
40 50

100 110

80

(3) CROSS-REFERENCE OF MYPROG

AS 10

FNA 20

N 20

X 50

Z 40

(4) 9050 140
6130 79
0200 60

80 96
110

90 100
60 70
80 100

(5) CONSTANTS IN MYPROG

1
2
3

DONE

20 20
20
60

IN MYPROG

80

90
120

110

130

30

139
200

130

30 49 50 790 80 130

In the example above, the pre-defined (intrinsic) functions in the program are listed first (in Group

(1)), alphabetically with the numbers of the lines in which they are used. The statement types used

are listed in Group (2), again alphabetically, with their line numbers in the program, in ascending

numerical order. Group (3) are the program’s user-defined functions and variables, in alphabetical

order with their line numbers in ascending numerical order, and group (4) are the line number ref-

erences such as in IF . . . THEN statements and GOTO statements. The left-most column of numbers

in group (4) are the destination line numbers and the right hand column(s) are the source line

numbers. The last group of numbers are the numeric constants in the program, with the numbers of

the lines in which they are used.

INDEX

Account number 1-1, 5-1 Command (continued)
Account, special purpose 5-2 RATe 1-3
Actual parameter 3-10 REDesignate 5-4
Algorithm 3-5 RENumber 4-3
ALT-MODE key 1-7 ROSter Appendix A
Argument 3-10 RUN 4-5
Argument, dummy 3-10 SAVe 5-3
Arithmetic operator 2-2, 2-3 SCRatch 1-5
Arithmetic operator hierarchy 2-3 SEE 5-6
Array 2-1, 2-18 SHAre 5-8, 6-15
Bounds 2-32 TAPe Appendix D
Definition 2-32 TIMe Appendix A
Dimension 2-32 UNShare 5-9, 6-17
Element 2-1 XPUnch Appendix D
Logical dimensions of 2-32 Character position 2-16, 2-20
Manipulation 2-35 Character position, absolute 2-20
ASCII character set Appendix B Common area 4-9
ASCII code 2-22 Common value 5-3
ASCII terminal 1-6 Constant 2-2
Assignment operator 2-8 Control character 1-1
Backslash (\) 1-2,1-7 Counting step size 3-4
BASIC statement 2-2 Counting variable 3-4
Baud rate, standard 1-3 Data item 2-24
BREAK key 1-2,1-6, 3-7 DATA-list 2-11
Carriage control specifier 2-27 Data type 2-12
Carriage return delay 1-3, 2-20 Date accessed 5-5, Appendix A
Carriage width, standard 1-3 Date saved 5-5, Appendix A
Character times 1-4 Decompile 5-3
Commands Appendix A Default format 2-14
ABOrtable 5-8 Delimiter 2-16
APPend 4-10, 5-9 Comma 2-18
BYE 1-4 Semicolon 2-18
CARriage 1-3, 2-14 Terminating 2-17
CATalog 5-4 Descriptive verb 2-6
CLOse 6-2 Dimension 2-12
COPy 6-16 Duplex, full (echo-plex) 1-2
CRD 1-3 Duplex, half 1-2, 3-7
ECHO 1-2 Echo-plex 1-2
FFD 1-4 E notation 2-23
GET 5-3 Error handling subroutin 3-6
HELIlo 1-2 ESCAPE key 1-2,1-7
HIDe 5-7 Execute a command file 7-1
INDex 5-6 Execute immediate mode 1-6, 4-5
KEY Appendix D Expression 2-2
KiLl 5-6 Defining 3-10
LENgth 4-8 Field 2-16
LFD 1-4 Width 2-15
LISt 4-4 Files 6-1
NON 5-8 Access mode 6-17
OPEn 6-2 Buffer 6-13
PUNch Appendix D Buffer “dump frequency” 6-14

I-1

Files (continued)
COM statement
Common
Copy
COPy command
creating
data location
data, packed
deleting
de-linked
Destination
Destination account
DIM statement
End-Of-File
End-Of-Record
FILE statement
Linking
MAT PRINT statement
MAT READ statement
Modes
Non-interfering file sharing
ON END flag
ON END statement
Overhead
Pointer
PRINT statement
Random access storage
READ statement
Re-linked
Serial access storage
SHAre command
Simultaneous file sharing
Source account
Source
Storage limit
Storage medium
String storage
Subsystem
TYP function
Unpaired character
UNShare command
WRITE access
WRITE link
Foreign library
Form feed delay
Format control character
Format specifier set
Format specifier string
Format string
Function
ABS
ASC
ATN
CHR$
CON
COS

6-13
6-13
6-16
6-16
6-2
6-10
6-2
6-2
6-18
6-17
6-17
6-14
6-10
6-7, 6-9
6-3
6-4
6-8
6-6
6-17
6-1
6-10
6-10
6-1
6-14
6-7
6-2, 6-5
6-5
6-19
6-2, 6-5
6-15
6-14
6-17
6-17
6-2
6-2
6-1
6-1
6-12
6-1
6-17
6-18
6-18
5-8
14
2-28
2-22
2.22
2.22
3-9
3-10
2-21
3-10
2-14, 2-21
2-34
3-10

Function (continued)

EXP 3-10
IDN 2-35
INT 3-10
Intrinsic 3-9
LEN 2-9
Local 3-9
LOG 3-10
REF 3-6, 3-13
RND 3-11
SGN 3-11
SIN 3-10
SQR 3-10
TAB 2-14, 2-20, 3-14
TAN 3-10
TYP 3-11, 6-12
VAL 2-30, 3-14
ZER 2-34
Group librarian 5-1
Group library 1-1,5-1
Hard wired 1-2,1-5
HELLO program 1-2
Implicit data type 2-22
Key verb 4-2
Last-in-first-out stack 3-6
Leading zeros 2-30
Left justify 2-16, 2-30
Library hierarchy 5-1
Line feed delay 14
Line number 4-2
LINE/OFF/LOCAL switch 1-5
Logical carriage width 2-20
Logical exit point 3-1, 3-6
Logical expression 2-7
Logical line length 2-17, 2-20
Logical operator 2-3
Log-off, automatic 1-5, 4-8
Log-off procedure 1-4
Log-on procedure 1-1
Loop, nested 3-4
Loop, program 3-4
Main memory 4-8
Master account 11
Master library 1-1,5-1
Matrix 2-1, 2-32
Addition 2-36
Arithmetic 2-32
Copy 2-36
Definition 2-32
Identity 2-35
Inversion 2-36
Multiplication 2-36
Square 2-35
Subtraction 2-36
Transpose 2-36
Normal program execution sequence 3-1

Numbers 2-1 Specifier set
Binary floating point 2-1 Statements
Decimal 2-1, 2-29 CHAIN
Random 3-11 COM
String 2-29 Contiguous

Numerator/denominator format 2-2 DATA

Numeric character 2-30 DEF

Numeric formatting 2-26 DIM

Numeric set 2-1, 2-30 END

ON ERROR flag 3-7 Executable

Operand 2-3 FOR

Operand, string 2-30 Format

Output buffer 4-5 GOSUB

Output formatting 2-14 GOTO

Packed output 2-16 GOTO, computed

Parameter, formal 3-10 GOTO, multi-branch

Password 1-1 Highest numbered

Physical carriage width 2-20 IF

Pointer, file 6-14 IMAGE

Pointer, port 3-12 INPUT

Print position 2-16 LET

Programs 4-1 MAT INPUT
Debugging 4-5 MAT PRINT
Entry mode 1-6 MAT READ
Execution 4-5 NEXT
Execution, abort 4-5 Non-executable
Execution mode 1-6 ON END
Execution sequence number 4-2 ON ERROR
Execution suspend 4-5 PRINT
Listing 4-4, Appendix A, Appendix E PRINT USING
Non-abort 1-5 READ
Statement 31, 4-1 REM
Subsection 3-5 RESTORE
Transfer a 1-5 RESUME

Punched paper tape Appendix D RETURN

Quotation marks 2-10, 2-14 STOP

Replacement program 4-8 Strings

Replicator 2-24 Arithmetic

Result 2-30 Constant

RETURN key 1-7 Destination

Revoke ON END flag 6-10 Dimension

Revoke ON ERROR flag 3-7 Empty

Revoke share privilege 5-9, 6-17 IF statement

Run time 4-1 LET statement

Scalar 2-1 Logical

Scientific notation 2-1 Logical length of

Screen files and programs 5-8 Manipulation

Serial number 5-5, Appendix A Packed

Share list 5-9, 6-15 Physical length of

Significant digits 2-1, 2-29 Source

Separator, comma 2-14 Subscript

Separator, semicolon 2-14 Truncated

SHAREDLIST utility program 5-9, 6-15 Variable

Special purpose accounts
Specifier, carriage control
Specifier list

5-2 Subscript
2-27 Superscript
2-24 Suppress carriage return

I-3

2-22
4.2

4-8

4.9, 6-13
4.9

2-10

3-9

2-1, 2-32, 6-14
1-6, 8-1
3-2

3-4

4-1

3-5

3-1

3-2

3-2

31

3-3

2-14, 2-22
2.6, 2-13
2-6

2-32

2.2, 214, 2-18
2-32

3-4

3-2

6-10

3-6

2-10, 2-14
2-14, 2-22
2.6

3-2, 4-8
2-12

3-6

3-5

1-6, 4-5
2-7, 2-29
2-29

2-14

2-8

2.7

2-6

2.7, 2-10
2-9

2.7

2.7

2.7

2-16

2.7

2-8

2-7

2.24, 2-30
2.7

2.2, 27
2-2

2-17

Suppress line feed

Swap track

System library

System manager
Telephone carrier, loss of
Teleprinter, standard
Terminal error
Terminating delimiter
Unscreen files and programs
Unveil files and programs
User counter

2-17
1-2,1-4

1-1, 5-1, 5-2
1-2, 5-1

1-5

1-3

1-6

2-17

5-8

5-6

5-5, Appendix A

I-4

User account
User library
Variable
Array
Name
Simple
String
Vector
Veil files and programs
Work area

5-2
5-1
2.2, 2-4
2-4
2-4
2-4
9-4
2-1
5-6

I!/?l

For more information and assistance contact: East: 3 Executive Campus, Cherry Hill, NJ 08002 (609) 662-1122
South: 1545 W. Mockingbird Lane, Suite 5013, Dallas, TX 75235 (214) 630-2431
Midwest: 2850 Metro Drive, Minneapolis, MN 55420 (612) 854-1122
West: 870 West Maude Avenue, Sunnyvale, CA 94086 (408) 733-1122

Basic Timesharing Inc. 'Y
870 West Maude Avenue, Sunnyvale, California 94086 (408) 733-1122

L

Printed in U.S.A. 1020-R0177

	Cover
	Foreward
	Table Of Contents
	Chapter 1: Getting Started
	1.1 Log-On Procedures
	1.2 Log-Off Procedures
	1.3 Computer Operating Modes
	1.4 Terminal Operating Characteristics

	Chapter 2: Fundamentals of BASIC
	2.1 Numeric Representation
	2.2 Arrays
	2.3 Expressions
	2.4 Arithmetic and Logical Operators
	2.5 Variables
	2.6 Strings
	2.7 Inputting Data
	2.8 Outputting Data
	2.9 String Arithmetic
	2.10 Matrix Arithmetic

	Chapter 3: Program Structure
	3.1 END Statement
	3.2 GOTO Statement
	3.3 IF ... THEN ... Statement
	3.4 FOR ... NEXT ... Statements
	3.5 GOSUB ... RETURN Statements
	3.6 ON ERROR ... RESUME Statements
	3.7 Local and Intrinsic Functions

	Chapter 4: Programs
	4.1 Compiler Operation
	4.2 Program Statements
	4.3 Line Numbers
	4.4 Entering a Program
	4.5 RENumber Command
	4.6 LISting and RUNning a Program
	4.7 Debugging a Program
	4.8 REM Statement
	4.9 CHAIN Statement
	4.10 COM Statement
	4.11 APPend Command

	Chapter 5: Libraries
	5.1 The Library Hierarchy
	5.2 Library Management
	5.3 Shared Programs

	Chapter 6: Files
	6.1 Structure of BASIC-X Files
	6.2 Creating/Erasing/Linking Files
	6.3 Accessing Files
	6.4 Common Files and File Buffers
	6.5 Shared Files

	Chapter 7: Command Files
	Appendix A: Commands
	Appendix B: ASCII Character Set
	Appendix C: Error Messages
	Appendix D: Punched Paper Tape
	Appendix E: Public Library Utility Programs
	Index

