()

OO0 0N0O000

CCccC

CCCC

PPPPPP PPPPPP

U U
P P P P u u
P P P P U J
P P P P U 8
PPPPPP PPPPPP U J Fhkkkhkkk
P & u U
2 P U U
P P 0] U
P P Jyuuuuy
00000 N N TTTTTTT RRRR 00000 L L EEEEEE RRRRR
c o0 J NN N T R R 9 0L L E R R
c 20 O NN N T R R 9 oL L) R R
0 0 N N N T ! R 0 0L L E R R
0 O N N N T RRRRR s 0L L EEERE RRRRR
0 O N N N T R R 0 O L L E R R
c O 0O N NN T R R 0 0L L B R R
c 0 O N NN T R R 3 0L L B R R
Nouvdo N N T R R 00000 LLLLLL LLLLLL EEEEEE R R
IITIT N N TTTTTTT EEBEEEE RRRR FFFFFF A CCCC EEECEE
I NN N T E R R F A A c CE
I NN N T E R R F A A C T E
I N N N T E R R F A A C E
I N N N T EEEEE RRRRR FFFFF AAAAAJA O EEEEE
I N N N T [R R F A AC E
I N NN T B R R F A A C C &
I N NN T E R R F A A C C E
IITIT N N T EEEEEE R R F A A CCCC EEEEEE
55888 PPPPP EEEZEE cccce 585SS
S S P P E C c S S
S P P B C C S
5 P P E c S
S PPPPP EEEEE c S
S P E C S
S p E c Cc S
S S P E C c S S 83
SEERES P EEEEEE CCCC 55658 38

PPU - CONTROLLER INTERFACE SPECIFICATION

written by

David W. Milton 7/15/31

PPU - Controller Interface Specification

The PPU resides in the system 8000 mainframe and communicates
with the system 8000 bus. With one exception (see SSU
specifications), all I/0 activities associated with the System 8000
involve an interface over a 50 pin flat cable with standard 3™ Co.
3416 (or equivelent) type, 50 pin connectors on either end. One
end connects to one of four ports on the PPU. The other end
connects to any one of a variety of controllers. Each controller
communicates with a specific type of I/0 device such as disk
drives, terminals, lineprinters, etc.

Within this cable, there are three sub-channels for
communication. One is an 8-bit + 1 parity bit wide data path with
four control signals to handle bi-directional asynchronous data
transfers. This is called the data path. The second is an 8-bit
wide path also with 4 control signals to handle bi-directional
asynchronous transfers. This is called the command-status path
since the PPU will send commands to a controller over this path and
a controller will send status to the PPU over this path. The third
is two signals named PFW- and RESET-. These signals reflect the
integrity of the System 8000 power supply(s), and RESET- also
allows the operating system to do a hard reset to a controller.

All signals on this 50 pin flat cable are active low.

The protocol on the 8 control wires above (4 for the data path
and 4 for the command-status path) is called the handshake (the
data path handshake and the command-status handshake respectively).
This handshake is used to sort out who is sending data when, and,
at what time the receiving unit may know the data is valid and may
be latched into his input registers. You will notice in the
following table listing pin-outs and signal names on this 50-pin
flat cable, that what the PPU asserts as command-out, the
controller will see as command-in. Likewise, what the controller
asserts as command-out, the PPU will see as command-in. Also, what
each unit asserts as flag-out, the other unit sees as flag-in.

PPU - Controller Interface Pin Assignments

PPU Signal Name

Pin Number

Controller Signal. Name

Data Path - Parity
Bit #7
- #6
- 45
- 24
- #3
- #2
- #1
Y - 1 0
Data Command-In

Command-Qut

l Flag-In
Flag-0Out
Command-Status - Bit #7
- 6

- #5

- #4

- #3

- #2

- 41

X - Y #0

Command-Status Command-In

1)

2)
3)

Flag-In

l Command-0ut
Flag-0Out

RESET-
PFW-

1.

3.

5.

7.

9.
11.
13.
15.
17.
19,
21.
23.
25.
27.
29,
31.
33.
35.
37.
39.
41,
43,
45.
47.
49.

18.
42.

Parity Data Path
#7 Bit
#6 -
#5 -
#4 -
#3 -
#2 -
1 -
;0 Y _ Y
Command-0Qut Data
Command-In l

Flag-Out
Flag-In
$7 Bit
6 -
#5 -
#4 -
#3 -
42 -
g(]i [- Y
Command-Out Command-Status
Command-In l

Command-Status

Flag-Out
Flag-In

RESET-
PFW-

With the exception of #18 and #42 above, all even numbered pins

are ground.

Bit #7 is the MSB. Bit %0 is the LSB.

If the eight data lines and the parity bit all float high, this
condition is detected as a parity error.

Command-Status Handshake

Logically, here is how these signals control a transfer from
the PPU to a controller or visa-versa:

1) Unit A (the sender) wants to send something to Unit B (the
receiver). Sender asserts command-out to tell the receiver
that there is data to be taken.

2) 1In response, receiver asserts flag-out to tell sender that
receiver sees that there is data to be taken.

3) 1In response, sender releases command-out to tell receiver that
he sees that receiver is alive and awake. Note that sometime
after asserting command-out and before releasing command-out,
sender must enable his output drivers.

4) Receiver will continue to assert flag-out until he has both
taken the data sent and has seen that command-out is released.
When both of these conditions are satisfied, the receiver
releases flag-out, which signifies the end of the transfer.
When sender sees that flag-out is released, sender knows that
the transfer is complete and may either turn off his output
drivers or re-assert command-out with new data to be sent.

Anyone may now send something else

Sender's Command-out 1 } \

"saveee

Receiver's Flag-out

emeéan

Sender's output enable

All above signals are active low.

Data Path Handshake

Logically, here is how these signals control a transfer from
the PPU to a controller or visa-versa:

1) Unit A (the sender) wants to send something to Unit B (the
receiver). Sender loads up his output registers, and then both
enables his output drivers and asserts command-out to tell the
receiver that there is data to be taken.

2) In response, receiver asserts flag-out to tell sender that
receiver sees that there is data to be taken.

3) In response, sender releases command-out to tell receiver that
he sees that receiver is alive and awake.

4) Receiver will continue to assert flag-out until he has both
taken the data sent and has seen that command-out is released.
When both of these conditions are satisfied, the receiver
releases flag-out, which signifies the end of the transfer.
When sender sees that flag-out is released, sender knows that
the transfer is complete and may either turn off his output
drivers or re-assert command-out with new data to be sent.

Sender may now send something else

Sender's Command-out 1 k \ 3

s zL .

2 4

- wveole

- -

Receiver's Flag-out

Sender's output enable

All above signals are active low.

6“

Contentions for the Command-Status Path

The PPU and the Controllers shall function such that contention
for use of the data path never occurs. Via communication over the
command-status path, both ends will know who is receiving and who
is sending well in advance of use of the data path, so that each
end will have the appropriate logic enabled.

There may, however, be occasional contention for use of the
command-status path. The PPU, the Controllers, and the Operating
System shall be programmed to minimize the possibility of
contention, but it may still happen. Following is a description of
how transfers may happen and how contention will be resolved.

Refer to the 2nd page following for a timing diagram of the 3
possible cases.

A. PPU sends data to a controller :
1. PPU asserts command-out.
2. Controller acknowledges by asserting flag-out.
3. PPU releases command-out,
4. Controller takes data and releases flag-out.

B. Controller sends data to a PPU
1. Controller asserts command-out.
2. PPU acknowledges by asserting flag-out.
3. Controller releases command-out.
4, PPU takes data and releases flag-out.

C. Controller tries to send data, PPU ignores it

and sends data itself. Controller must take PPU's data :

l. Controller asserts command-out.

2. PPU ignores controllers command-in but instead asserts
command-out.

3. Controller releases command-out and acknowledges PPU's
command-in by asserting flag-out.

4. PPU releases command-out.

5. Controller takes the data and releases flag-out.

The PPU is in command of this handshake. The PPU may respond
to command-in and take data the controller is sending or it may
choose to ignore it. If the PPU tries to send data by asserting
command-out, the data will be sent, and the controller must take
it. Anytime a controller sees command-in, it must release
command-out (if set) and take the PPU's data by asserting flag-out.
Thus, if a controller sets command-out, after an arbitrarily long
or short length of time, the controller will see either flag-in
which indicates the PPU will take the data, or the controller will
see command-in which indicates the PPU will not take the
controllers data but instead the controller must take the PPU's
data.

Under no circumstances may a controller or the PPU assert both
command-out and flag-out at the same time. This would indicate the
unit is both sending and receiving data simultaneously which is not
allowed.

PPU .- Controller Command-Status Handshake

€w\ CASE A. PPU sends a command to the controller

PPU Controller
co- 1 | 3 | cI-
FI- 2 | a_| FO-
CI- co-
FO- FI-

CASE B. Controller sends status to the PPU

PPU Controller
co- cI-
FI- FO-
cI- 1 3 co-
e FO- 2 | 4 | FI-

CASE C. Controller tries to send status, PPU ignores it and sends
a command, Controller takes command.

PPU Controller
co- 2 | 4 | cI-
FI- 3 | s [ro-
ci- 1] 3 | co-
FO- FI-

PPU's COMMAND STATUS HANDSHAKE

(“‘wa gusy (3)

Q0
CcL\X
‘ —— .
g -'q ’ 517'.' - Flaﬁ-ln (')
o . Pon?t D
: <CLK
. ;.l AST Pon ¥
; CLk CoMMAPD -ovY (-)
> ﬁ:{> 3 ¥
> oQl—v¢ —[>o——>
COMMAND ~OV l I
(- v 2 .
+S5SV ——r || | T e
'] -
DATA (V) opTA (-)
¥ F“%'M‘%D > >
”~
A
“cranr Floy-ovt (-)
Flag-ovt (-)
o N

CcLXs Yising edqes net
cloger Yhan 100 ns.

. poer Reseté)

Command - \n (*-)

- COMMAND~ N (+) sgg % ﬂ

cLk
< —

(439

Pont Pon ¥

This circuit implements the System 8P@f handshake from the PPU's end, in that PPU may
choose to jgnore COMMAND IMN, and may always set COMMAMD OUT provided the last transfer
was complete. The PPU must be smart enough to not take the data or clear flag-out
until COMMAMND IN has gone away.

fThis circuit is not necessarily used, but reflects the logic involved in the handshake.

CONTROLLER'S COMMAMD STATUS HANDSHAKE

-

. -wm)
Flag-in (+) Si7y S17Y4 Flaﬂ n
D —— —
<i£ Port Busy ﬁ] @ 0 ‘a N -
L 7 Pont <.C_LK <._°..‘.'$

T ' l cLy Pon¥ p:f. +

3 seT COMMID:-l > 3y bQ Command-ovt (-)
ovt (- 9
e 1T~|I
clecr Command - Lsoz
ot) I
SI LSO2 |
AR e S0 B X115 31 S . . DATA(Y) . __DATA (<) .
cLear § laas-ow't T 3 S0 LSO2 - —>
' P Flag-eot ¢

& Pjn’e 5174 Command-in (-)
1 oo b <

« Port Resel & ‘ ciw
- LSo2 <

. S174 41?

Oata Ua.i"\’na 1'_ Pon *
«— & QD
CLK ,
? ClK s rising e3365 not closer Yhan |OOnS.
Pon +

This circuit implements the System 89P0 handshake from a controller's end, in that the
controller must always answer command-in, but may not get a response to command-out.
The controller knows it is sending data when it sees flag-in and must be smart enough
not to send more data until it sees flag-in go away.

) (""'his circuit is not necessarily used, but reflects the logic involved in the handshake.

@ qurod 1533 1P paAMSDVIW Sl

g 7 (=) O rﬁ 4
mc.>_uwum L /)P PN VY0P A.:QCH
. .
_ - svoezs | (9 W1 pUOWWO
/ _
g 1 (<) w boy 4
mc__hum —] _ = piyon vyop dno
1 .
SU0953+50 (=1]H0 PUTWWO)
<
—o=r =
SuQS<H

CS...G& m«j.dn_.m -1chEoU .mz.j. Lo.* coﬂ.du&._.uun_m mc_.E_.J..._.

vsna
WYNOS § S13INS 00T 48CTY

33vROS € m—wwzme t Zeg-Zr _ _~ 4

JavNOS ¢ S133IHS OF (8C-Er 2

e ‘C

(

@ P,.:o& 3593 FO PaiMmsvOW saw! |

7 SYLLAME
\

w3) P{ON V39 gaduT
nc_awwuuml., _ (=) PN V4P 4

_ suQ2<d (=9 ¥l puowwo)

N
|«
Suoh 3%
é A (=3 1 boy 4
pud) (120 24mp adjnQ
?.:.mcmm -
SWEOS3+5 0 *.\ (=) {00 puowWa?)
<
~—s<7 e
SU0£5%50
Yyoq 2o o4F o voigoay ..uun_m b Wiy
¢ AT B | e

Electrical Specification for the Command-Status and Data Sub-Channels

€f‘1) Bi-directional pins
+§.0v

30D oo in Llat cabl

2) Uni-directional pins (the handshakes)

Driver | +5.0v + S50V Receiver
{>c@2 L0uh EELT S 3300 % 1. O ,@
220.0. ?aon% II topf

Voltage Levels

Vol < 0.5V
Voh > 2.25 ¥
Drivers
Must be able to sink 24mA @ < 0.5 V
Must be able to source 7mA @ > 2.25 V
(if 74524X, place only 4 drivers in one package due to max. power
dissipation)
Receivers
I., <500 yA @ 0.5V

il
Typical Propagation Delays

Through both filters with a diminishingly short cable connecting them:

Add approximately 1.6ns/foot of cable between the two filters

PPU - Controller Command-Status Bus Firmware Protocal

All control related communication between a PPU and a
Controller use the Command-Status bus between the two devices. Any
string sent on the Command-Status bus consists of three parts :

l. A first byte that identifies the type and length of the strinna.
This byte is called the Transmission IDentifier, or "TID".

2. The information to be sent, anywhere from 0 to 5 bhytes lonjg.
(sce appropriate controller documentation for whst information
may be sent in these bytes).

3. The Check byte usad to insure odd verticsl parity. This bhyte
is called a Block Check Character, abrieviated "BCC".

A devize that is receiving & string will check the first byte
to see what type #nd how long the string is. After the transfer is
complete, the receiving device will also check the vertical parity
to be sure it received the string correctly. When a strinqg is
properly received the receiving device issuss an "ACK" byte back to
the sending device, showing acceptance of the string. When a
string is received with an undefined first byte or bad parity, the
receiving device sends a "NACK" back to the sending device, showing
rejaction of the strinj.

The low order 3 bits in avery first byte contain the number of
bytes between the first byte and final check byte.

Strings are sent one byte at a time using the two handshake
lines : Command-out and Flag-in.

Firmware Constraints for the Command-Status Path

When a PPU is sending a string to a controller, it must not
acknowledge a CI (i.e.; send a FO to that controller) until all
the bytes in that string have been accepted by that controller.

A controller will not accept input until it is able to act on
it.

Unless executing a previous command, a controller will be fast
enough to accept a string of 8 bytes from the PPU and ACK or
NACK it within 10ms of the first CI.

A controller will not issue a NACK or an ACK upon receiving a 1
byte transfer that is a NACK or an ACK.

All strings except ACK & NACK will be an even number of bytes
long, including first byte and check byte. i.e. A 5 byte
message (7 byte string with first byte and check byte) will
have an extra byte before the check byte. This byte is
undefined but must be included in all check byte calculations.
ACK and NACK are single byte transfers with no check bytes
following them.

If a device is outputting or has just finished outputting a
string or is expecting an ACK or NACK and receives something
different it should assume it received a NACK, If the device
is a controller and the received byte was a valid first byte
the controller should also accept the PPU's string. That is, a
first byte from the PPU may be both a NACK and a first byte as
described on the next page.

When a device is receiving a string it should

a) send a NACK if the first byte isn't legal (see #4)

b) XOR all the bytes together

c) test the result for "FF"

d) if the result is not "FF", send a NACK and ignore the string

e) if the result is "FF", send an ACK and take the appropriate
action.

When a device is sending a string and receives a NACK it should
try to send the string again, unless it has exceeded its retry
count. The retry count is device dependent.

First Byte Definitions

A. From PPU to Controller

Operating System sending a word to the
Controller.

Operating System requesting a status from
a Controller.

B. From Controller to PPU

1.

2.

7.

34

60

50

54

20

a4

Cc4

Controller updating its secondary status word.

Controller notifying PPU of its readiness
to accept data over the data path (commonly
known as a Go byte).

Controller requests PPU to interrupt Operating
System. (commonly known as an interrupt byte).

Controller updates Primary Status and requests
PPU to interrupt Operating System.

Controller notifies PPU that it believes the
data transmission over the data path to be
completed. (commonly known as an EOR or End of
Record byte).

Controller responding to a Status Request.

Controller updating its Primary Status word.

C. Bi-directional

1.

2,

F8

OE

NACK : did not accept incoming string.

ACK : did accept incoming string.

PFW and RESET

PFW-

The POWER FAIL WARNING signal is availiable to all units
associated with the System 8000 computer. It is active low to warn
of an impending power failure or system boot or system reset. Only
those controllers which write onto mass storage media need examine
this signal. Just before initiating a lengthy write procedure, a
controller should check PFW- and not begin the write procedure if a
power loss / system reset is imminent since the write probably
would not have time to complete anyway.

RESET-

This signal is a command to a controller to do a hard reset to
itself. 1In particular, all the handshake lines in both the
controller and the PPU must unconditionally be held inactive. 1In
addition, the controller should be reset in a manner similar to how
it wakes up when power is first turned on.

RESET- is used to perform two functions. 1Its primary function
is to hold the handshake inactive and the controller stopped while
the power is bad in the System 8000 mainframe. Secondly, the
operating system may instruct the PPU to do a reset to a particular
controller as a last chance effort to straighten out a controller
that has accidentally gotten itself into a very confused state.

Following the release of RESET-, a controller must perform its
self-test(s) and be ready to respond to the PPU within 2.0 seconds
of RESET- being released.

Timing for PFW- and RESET-

Power failure

PFW- L DOXXXXXXX | |
RESET- : 1 : : | :
:t t>0 : t3 0 : t=1lsec : t=1 sec : t= 2 sec :
a e >+ s e -
System 8000 T : :
power is bad : :
PPU and controller told to do a self-test -3 :

Controller must be ready to respond to commands

Y

Particular controller reset

PFW-
RESET- 1 | :
s t>» 25 us t= 2 sec :
e oty >
Controller told to do a self-test —p ¢ :
Controller must be ready to respond to commands]
System boot or reset
PFW- I I
RESET- : : | | :
st t=250 ms : t=250 ms : t2500ms : t=2 sec :
a4 >+ -t >
PPU and controller told to do a self-test—— :
Controller must be ready to respond to commands 3

C'mf? Electrical specifications of PFW- and RESET-

PFW- * RESET-

V1 < 0.5V Vl < 0.8V

Vh > 2.4V Vh > 3.75 V
Ih > 200 uA @ 2.4 V Ih > 2.0 mA @ 3.75 V
I1 > 1.0mA @ 0.5V I1 > 250 uA @ 0.8 V

* A controller's RESET- must float to a valid low logic level to

guarantee that a controller which is not cabled to the System 8000
will be held reset.

Required filtering on both PFW- and RESET- :

50 pin flat cable

PPU's l 160.0% Controller's

G@”‘mdriver I >> > > T—ﬂ/\/\/\/‘ f receiver
.OI/‘:F ioy‘.“ loy‘:‘,‘

The filtering is to maintain the signal at an A.C. ground since
adjacent signals in the 50 pin flat cable are high speed signals.
By the time PFW- and RESET- get to a controller, the rise / fall
time is quite slow and this must be considered in the detect
circuitry.

Reset within the controller must be valid regardless of the
state of that controller's power supply(s). A controller must hold
itself reset if its own power is bad.

